A survey of graph neural networks for recommender systems: Challenges, methods, and directions

C Gao, Y Zheng, N Li, Y Li, Y Qin, J Piao… - ACM Transactions on …, 2023 - dl.acm.org
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …

A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

Graph neural networks for natural language processing: A survey

L Wu, Y Chen, K Shen, X Guo, H Gao… - … and Trends® in …, 2023 - nowpublishers.com
Deep learning has become the dominant approach in addressing various tasks in Natural
Language Processing (NLP). Although text inputs are typically represented as a sequence …

Self-supervised heterogeneous graph neural network with co-contrastive learning

X Wang, N Liu, H Han, C Shi - Proceedings of the 27th ACM SIGKDD …, 2021 - dl.acm.org
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown
superior capacity of dealing with heterogeneous information network (HIN). However, most …

Are we really making much progress? revisiting, benchmarking and refining heterogeneous graph neural networks

Q Lv, M Ding, Q Liu, Y Chen, W Feng, S He… - Proceedings of the 27th …, 2021 - dl.acm.org
Heterogeneous graph neural networks (HGNNs) have been blossoming in recent years, but
the unique data processing and evaluation setups used by each work obstruct a full …

A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

Contrastive meta learning with behavior multiplicity for recommendation

W Wei, C Huang, L Xia, Y Xu, J Zhao… - Proceedings of the fifteenth …, 2022 - dl.acm.org
A well-informed recommendation framework could not only help users identify their
interested items, but also benefit the revenue of various online platforms (eg, e-commerce …

Interest-aware message-passing GCN for recommendation

F Liu, Z Cheng, L Zhu, Z Gao, L Nie - Proceedings of the web conference …, 2021 - dl.acm.org
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is
attributed to their capability on learning good user and item embeddings by exploiting the …

Heterogeneous graph structure learning for graph neural networks

J Zhao, X Wang, C Shi, B Hu, G Song… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
Abstract Heterogeneous Graph Neural Networks (HGNNs) have drawn increasing attention
in recent years and achieved outstanding performance in many tasks. The success of the …

Debiasing graph neural networks via learning disentangled causal substructure

S Fan, X Wang, Y Mo, C Shi… - Advances in Neural …, 2022 - proceedings.neurips.cc
Abstract Most Graph Neural Networks (GNNs) predict the labels of unseen graphs by
learning the correlation between the input graphs and labels. However, by presenting a …