Parameter identifiability in statistical machine learning: a review

ZY Ran, BG Hu - Neural Computation, 2017 - ieeexplore.ieee.org
This review examines the relevance of parameter identifiability for statistical models used in
machine learning. In addition to defining main concepts, we address several issues of …

The misspecified Cramér-Rao bound and its application to scatter matrix estimation in complex elliptically symmetric distributions

S Fortunati, F Gini, MS Greco - IEEE Transactions on Signal …, 2016 - ieeexplore.ieee.org
This paper focuses on the application of recent results on lower bounds under misspecified
models to the estimation of the scatter matrix of complex elliptically symmetric (CES) …

On the application of the expectation‐maximisation algorithm to the relative sensor registration problem

S Fortunati, F Gini, A Farina, A Graziano… - IET Radar, Sonar & …, 2013 - Wiley Online Library
An important prerequisite for successful multisensor integration is that the data from the
reporting sensors are transformed to a common reference frame free of systematic or …

Complete systematic error model of ssr for sensor registration in atc surveillance networks

ÁJ Jarama, J López-Araquistain, G De Miguel… - Sensors, 2017 - mdpi.com
In this paper, a complete and rigorous mathematical model for secondary surveillance radar
systematic errors (biases) is developed. The model takes into account the physical effects …

Versatility of constrained CRB for system analysis and design

T Menni, J Galy, E Chaumette… - IEEE Transactions on …, 2014 - ieeexplore.ieee.org
Provided that one keeps in mind the Craḿer-Rao bound (CRB) limitations, that is, to become
an overly optimistic lower bound when the observation conditions degrades, the CRB is a …

Parameter bounds under misspecified models for adaptive radar detection

S Fortunati, F Gini, MS Greco - … Press Library in Signal Processing, Volume …, 2018 - Elsevier
This chapter aims to provide a comprehensive overview on lower bounds on mean square
error (MSE) on the estimation of a deterministic parameter vector under misspecified …

Determining parameter identifiability from the optimization theory framework: A Kullback–Leibler divergence approach

ZY Ran, BG Hu - Neurocomputing, 2014 - Elsevier
This paper reports an extension of the existing investigations on determining identifiability of
statistical parameter models. By making use of the Kullback–Leibler divergence (KLD) in …

Least squares estimation and hybrid Cramér-Rao lower bound for absolute sensor registration

S Fortunati, F Gini, MS Greco, A Farina… - … on Advances in …, 2012 - ieeexplore.ieee.org
An important prerequisite for successful multisensor integration is that the data from the
reporting sensors are transformed to a common reference frame free of systematic or …

A lower bound for the mismatched maximum likelihood estimator

S Fortunati, MS Greco, F Gini - 2015 IEEE Radar Conference …, 2015 - ieeexplore.ieee.org
A lower bound on Mean Square Error (MSE) of the estimate of a real deterministic parameter
vector under misspecified model is proposed in this paper. In particular, a lower bound on …

An identifying function approach for determining parameter structure of statistical learning machines

ZY Ran, BG Hu - Neurocomputing, 2015 - Elsevier
This paper presents an identifying function (IF) approach for determining parameter structure
of statistical learning machines (SLMs). This involves studying three related aspects …