Similarity versus relatedness: A novel approach in extractive Persian document summarisation
F Shafiee, M Shamsfard - Journal of Information Science, 2018 - journals.sagepub.com
Automatic text summarisation is the process of creating a summary from one or more
documents by eliminating the details and preserving the worthwhile information. This article …
documents by eliminating the details and preserving the worthwhile information. This article …
Vence: A new machine learning method enhanced by ontological knowledge to extract summaries
JA Motta, L Capus, N Tourigny - 2016 SAI Computing …, 2016 - ieeexplore.ieee.org
Obtaining extractive summaries by using functions induced from a training set continue to be
a great challenge in the domain of the automatic text summary. This paper presents the …
a great challenge in the domain of the automatic text summary. This paper presents the …
Development and Use of Cholangiocarcinoma Ontology for Analysis of Risk Factors in a Research Cohort in Thailand
A Pengput - 2024 - search.proquest.com
The use of ontologies to represent biomedical data and knowledge has increased in the
application of biological and healthcare research. This dissertation integrates and analyzes …
application of biological and healthcare research. This dissertation integrates and analyzes …
CRF Machine Learning Model Reinforced by Ontological Knowledge for Document Summarization
JA Motta, J Ladouceur - Proceedings on the International …, 2017 - search.proquest.com
This research presents a very efficient machine learning method based on Conditional
Random Fields (CRF) for the extraction of multi-document summaries. We have used the …
Random Fields (CRF) for the extraction of multi-document summaries. We have used the …
[PDF][PDF] Evaluation of Efficiency of Linear Techniques to Optimize Attribute Space in Machine Learning: Relevant Results for Extractive Methods of Summarizing
JA Motta, L Capus, N Tourigny - Computer and Information …, 2012 - researchgate.net
One major challenge in the field of machine learning, especially in classification problems, is
to optimize the attribute space in order to obtain a classification function, which will be used …
to optimize the attribute space in order to obtain a classification function, which will be used …
[PDF][PDF] Semantification of text through summarisation.
M Joshi - 2019 - pure.ulster.ac.uk
The research topic of this thesis is semantic representation of text document and abstractive
summarisation. Designing a semantic representation of text document is an important …
summarisation. Designing a semantic representation of text document is an important …
[PDF][PDF] Automatic news summarization method based Maximal Marginal Relevance
D Wei - icj-e.org
Automatic summary, as the name suggests, is from a single article or multiple articles, the
removal point to summarize the article to the effect of technology. It plays an important role in …
removal point to summarize the article to the effect of technology. It plays an important role in …
Pembandingan Aplikasi Peringkasan Multi Dokumen menggunakan Sentence Scoring dan Maximum Marginal Relevance dengan K-Means
VB PROVITASARI - 2016 - e-journal.uajy.ac.id
Informasi dalam bentuk teks berita telah menjadi salah satu komoditas yang paling penting
dalam era informasi ini. Perkembangan teknologi internet berdampak bertambahnya jumlah …
dalam era informasi ini. Perkembangan teknologi internet berdampak bertambahnya jumlah …
VENCE: un modèle performant d'extraction de résumés basé sur une approche d'apprentissage automatique renforcée par de la connaissance ontologique
JA Motta - 2014 - corpus.ulaval.ca
Résumé De nombreuses méthodes et techniques d'intelligence artificielle pour l'extraction
d'information, la reconnaissance des formes et l'exploration de données sont utilisées pour …
d'information, la reconnaissance des formes et l'exploration de données sont utilisées pour …