Graph representation learning in biomedicine and healthcare

MM Li, K Huang, M Zitnik - Nature Biomedical Engineering, 2022 - nature.com
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …

Generative models for molecular discovery: Recent advances and challenges

C Bilodeau, W Jin, T Jaakkola… - Wiley …, 2022 - Wiley Online Library
Abstract Development of new products often relies on the discovery of novel molecules.
While conventional molecular design involves using human expertise to propose …

C–H activation

T Rogge, N Kaplaneris, N Chatani, J Kim… - Nature Reviews …, 2021 - nature.com
Transition metal-catalysed C–H activation has emerged as an increasingly powerful platform
for molecular syntheses, enabling applications to natural product syntheses, late-stage …

A review of molecular representation in the age of machine learning

DS Wigh, JM Goodman… - Wiley Interdisciplinary …, 2022 - Wiley Online Library
Research in chemistry increasingly requires interdisciplinary work prompted by, among
other things, advances in computing, machine learning, and artificial intelligence. Everyone …

Inverse design of 3d molecular structures with conditional generative neural networks

NWA Gebauer, M Gastegger, SSP Hessmann… - Nature …, 2022 - nature.com
The rational design of molecules with desired properties is a long-standing challenge in
chemistry. Generative neural networks have emerged as a powerful approach to sample …

Deep learning enables rapid identification of potent DDR1 kinase inhibitors

A Zhavoronkov, YA Ivanenkov, A Aliper… - Nature …, 2019 - nature.com
We have developed a deep generative model, generative tensorial reinforcement learning
(GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility …

Machine learning for electronically excited states of molecules

J Westermayr, P Marquetand - Chemical Reviews, 2020 - ACS Publications
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …

Artificial intelligence in drug discovery: recent advances and future perspectives

J Jiménez-Luna, F Grisoni, N Weskamp… - Expert opinion on drug …, 2021 - Taylor & Francis
Introduction: Artificial intelligence (AI) has inspired computer-aided drug discovery. The
widespread adoption of machine learning, in particular deep learning, in multiple scientific …

[HTML][HTML] De novo molecular design and generative models

J Meyers, B Fabian, N Brown - Drug discovery today, 2021 - Elsevier
Molecular design strategies are integral to therapeutic progress in drug discovery.
Computational approaches for de novo molecular design have been developed over the …

The role of machine learning in the understanding and design of materials

SM Moosavi, KM Jablonka, B Smit - Journal of the American …, 2020 - ACS Publications
Developing algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …