Wild patterns reloaded: A survey of machine learning security against training data poisoning
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …
and large training datasets. The training data is used to learn new models or update existing …
[PDF][PDF] A review of speech-centric trustworthy machine learning: Privacy, safety, and fairness
Speech-centric machine learning systems have revolutionized a number of leading
industries ranging from transportation and healthcare to education and defense …
industries ranging from transportation and healthcare to education and defense …
Poisoning web-scale training datasets is practical
N Carlini, M Jagielski… - … IEEE Symposium on …, 2024 - ieeexplore.ieee.org
Deep learning models are often trained on distributed, web-scale datasets crawled from the
internet. In this paper, we introduce two new dataset poisoning attacks that intentionally …
internet. In this paper, we introduce two new dataset poisoning attacks that intentionally …
On the exploitability of instruction tuning
Instruction tuning is an effective technique to align large language models (LLMs) with
human intent. In this work, we investigate how an adversary can exploit instruction tuning by …
human intent. In this work, we investigate how an adversary can exploit instruction tuning by …
Backdoor learning: A survey
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so
that the attacked models perform well on benign samples, whereas their predictions will be …
that the attacked models perform well on benign samples, whereas their predictions will be …
Domain watermark: Effective and harmless dataset copyright protection is closed at hand
The prosperity of deep neural networks (DNNs) is largely benefited from open-source
datasets, based on which users can evaluate and improve their methods. In this paper, we …
datasets, based on which users can evaluate and improve their methods. In this paper, we …
Label poisoning is all you need
In a backdoor attack, an adversary injects corrupted data into a model's training dataset in
order to gain control over its predictions on images with a specific attacker-defined trigger. A …
order to gain control over its predictions on images with a specific attacker-defined trigger. A …
Untargeted backdoor watermark: Towards harmless and stealthy dataset copyright protection
Y Li, Y Bai, Y Jiang, Y Yang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Deep neural networks (DNNs) have demonstrated their superiority in practice. Arguably, the
rapid development of DNNs is largely benefited from high-quality (open-sourced) datasets …
rapid development of DNNs is largely benefited from high-quality (open-sourced) datasets …
Cramming: Training a Language Model on a single GPU in one day.
J Geiping, T Goldstein - International Conference on …, 2023 - proceedings.mlr.press
Recent trends in language modeling have focused on increasing performance through
scaling, and have resulted in an environment where training language models is out of …
scaling, and have resulted in an environment where training language models is out of …
Dataset security for machine learning: Data poisoning, backdoor attacks, and defenses
As machine learning systems grow in scale, so do their training data requirements, forcing
practitioners to automate and outsource the curation of training data in order to achieve state …
practitioners to automate and outsource the curation of training data in order to achieve state …