A review of single-source deep unsupervised visual domain adaptation

S Zhao, X Yue, S Zhang, B Li, H Zhao… - … on Neural Networks …, 2020 - ieeexplore.ieee.org
Large-scale labeled training datasets have enabled deep neural networks to excel across a
wide range of benchmark vision tasks. However, in many applications, it is prohibitively …

Transfer adaptation learning: A decade survey

L Zhang, X Gao - IEEE Transactions on Neural Networks and …, 2022 - ieeexplore.ieee.org
The world we see is ever-changing and it always changes with people, things, and the
environment. Domain is referred to as the state of the world at a certain moment. A research …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arXiv preprint arXiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Usb: A unified semi-supervised learning benchmark for classification

Y Wang, H Chen, Y Fan, W Sun… - Advances in …, 2022 - proceedings.neurips.cc
Semi-supervised learning (SSL) improves model generalization by leveraging massive
unlabeled data to augment limited labeled samples. However, currently, popular SSL …

Deep subdomain adaptation network for image classification

Y Zhu, F Zhuang, J Wang, G Ke, J Chen… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
For a target task where the labeled data are unavailable, domain adaptation can transfer a
learner from a different source domain. Previous deep domain adaptation methods mainly …

Adarnn: Adaptive learning and forecasting of time series

Y Du, J Wang, W Feng, S Pan, T Qin, R Xu… - Proceedings of the 30th …, 2021 - dl.acm.org
Time series has wide applications in the real world and is known to be difficult to forecast.
Since its statistical properties change over time, its distribution also changes temporally …

Personalized transfer of user preferences for cross-domain recommendation

Y Zhu, Z Tang, Y Liu, F Zhuang, R Xie… - Proceedings of the …, 2022 - dl.acm.org
Cold-start problem is still a very challenging problem in recommender systems. Fortunately,
the interactions of the cold-start users in the auxiliary source domain can help cold-start …

Fedhealth: A federated transfer learning framework for wearable healthcare

Y Chen, X Qin, J Wang, C Yu, W Gao - IEEE Intelligent Systems, 2020 - ieeexplore.ieee.org
With the rapid development of computing technology, wearable devices make it easy to get
access to people's health information. Smart healthcare achieves great success by training …

Moment matching for multi-source domain adaptation

X Peng, Q Bai, X Xia, Z Huang… - Proceedings of the …, 2019 - openaccess.thecvf.com
Conventional unsupervised domain adaptation (UDA) assumes that training data are
sampled from a single domain. This neglects the more practical scenario where training data …