Federated learning for intrusion detection system: Concepts, challenges and future directions

S Agrawal, S Sarkar, O Aouedi, G Yenduri… - Computer …, 2022 - Elsevier
The rapid development of the Internet and smart devices trigger surge in network traffic
making its infrastructure more complex and heterogeneous. The predominated usage of …

A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions

R Khan, P Kumar, DNK Jayakody… - … Surveys & Tutorials, 2019 - ieeexplore.ieee.org
Security has become the primary concern in many telecommunications industries today as
risks can have high consequences. Especially, as the core and enable technologies will be …

Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study

MA Ferrag, L Maglaras, S Moschoyiannis… - Journal of Information …, 2020 - Elsevier
In this paper, we present a survey of deep learning approaches for cyber security intrusion
detection, the datasets used, and a comparative study. Specifically, we provide a review of …

[HTML][HTML] DCNNBiLSTM: An efficient hybrid deep learning-based intrusion detection system

V Hnamte, J Hussain - Telematics and Informatics Reports, 2023 - Elsevier
In recent years, all real-world processes have been shifted to the cyber environment
practically, and computers communicate with one another over the Internet. As a result, there …

Deep learning methods in network intrusion detection: A survey and an objective comparison

S Gamage, J Samarabandu - Journal of Network and Computer …, 2020 - Elsevier
The use of deep learning models for the network intrusion detection task has been an active
area of research in cybersecurity. Although several excellent surveys cover the growing …

Explainable artificial intelligence (XAI) to enhance trust management in intrusion detection systems using decision tree model

B Mahbooba, M Timilsina, R Sahal, M Serrano - Complexity, 2021 - Wiley Online Library
Despite the growing popularity of machine learning models in the cyber‐security
applications (eg, an intrusion detection system (IDS)), most of these models are perceived …

A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges

J Xie, FR Yu, T Huang, R Xie, J Liu… - … Surveys & Tutorials, 2018 - ieeexplore.ieee.org
In recent years, with the rapid development of current Internet and mobile communication
technologies, the infrastructure, devices and resources in networking systems are becoming …

A survey on encrypted network traffic analysis applications, techniques, and countermeasures

E Papadogiannaki, S Ioannidis - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The adoption of network traffic encryption is continually growing. Popular applications use
encryption protocols to secure communications and protect the privacy of users. In addition …

BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset

T Su, H Sun, J Zhu, S Wang, Y Li - IEEE Access, 2020 - ieeexplore.ieee.org
Intrusion detection can identify unknown attacks from network traffics and has been an
effective means of network security. Nowadays, existing methods for network anomaly …

Designing a network intrusion detection system based on machine learning for software defined networks

AO Alzahrani, MJF Alenazi - Future Internet, 2021 - mdpi.com
Software-defined Networking (SDN) has recently developed and been put forward as a
promising and encouraging solution for future internet architecture. Managed, the …