Cluster algebras and triangulated surfaces. Part I: Cluster complexes

S Fomin, M Shapiro, D Thurston - 2008 - projecteuclid.org
Cluster algebras are a class of commutative rings endowed with an additional combinatorial
structure, which involves a set of distinguished generators (cluster variables) grouped into …

On differential graded categories

B Keller - arXiv preprint math/0601185, 2006 - arxiv.org
arXiv:math/0601185v5 [math.KT] 19 Jun 2006 Page 1 arXiv:math/0601185v5 [math.KT] 19 Jun
2006 ON DIFFERENTIAL GRADED CATEGORIES BERNHARD KELLER Abstract. Differential …

Cluster algebras and quantum affine algebras

D Hernandez, B Leclerc - 2010 - projecteuclid.org
CLUSTER ALGEBRAS AND QUANTUM AFFINE ALGEBRAS Page 1 CLUSTER
ALGEBRAS AND QUANTUM AFFINE ALGEBRAS DAVID HERNANDEZ and BERNARD …

Cluster structures for 2-Calabi–Yau categories and unipotent groups

AB Buan, O Iyama, I Reiten, J Scott - Compositio Mathematica, 2009 - cambridge.org
We investigate cluster-tilting objects (and subcategories) in triangulated 2-Calabi–Yau and
related categories. In particular, we construct a new class of such categories related to …

Auslander correspondence

O Iyama - Advances in Mathematics, 2007 - Elsevier
We study Auslander correspondence from the viewpoint of higher-dimensional analogue of
Auslander–Reiten theory [O. Iyama, Higher dimensional Auslander–Reiten theory on …

Preprojective algebras and cluster algebras

C Geiss, B Leclerc, J Schröer - Trends in representation theory of …, 2008 - books.google.com
Cluster algebras were invented by Fomin and Zelevinsky in 2001 [9]. One of the main
motivations for introducing this new class of commutative algebras was to provide a …

Rigid modules over preprojective algebras

C Geiß, B Leclerc, J Schröer - Inventiones mathematicae, 2006 - Springer
Let Λ be a preprojective algebra of simply laced Dynkin type Δ. We study maximal rigid Λ-
modules, their endomorphism algebras and a mutation operation on these modules. This …

Monoidal categorification of cluster algebras

SJ Kang, M Kashiwara, M Kim, S Oh - Journal of the American Mathematical …, 2018 - ams.org
We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring
$ A_q (\mathfrak {n}(w)) $, associated with a symmetric Kac–Moody algebra and its Weyl …

Kac–Moody groups and cluster algebras

C Geiß, B Leclerc, J Schröer - Advances in Mathematics, 2011 - Elsevier
Let Q be a finite quiver without oriented cycles, let Λ be the associated preprojective algebra,
let g be the associated Kac–Moody Lie algebra with Weyl group W, and let n be the positive …

Quantizations of conical symplectic resolutions II: category and symplectic duality

T Braden, A Licata, N Proudfoot, B Webster - arXiv preprint arXiv …, 2014 - arxiv.org
We define and study category $\mathcal O $ for a symplectic resolution, generalizing the
classical BGG category $\mathcal O $, which is associated with the Springer resolution. This …