Attention mechanisms in computer vision: A survey

MH Guo, TX Xu, JJ Liu, ZN Liu, PT Jiang, TJ Mu… - Computational visual …, 2022 - Springer
Humans can naturally and effectively find salient regions in complex scenes. Motivated by
this observation, attention mechanisms were introduced into computer vision with the aim of …

Deep learning for 3d point clouds: A survey

Y Guo, H Wang, Q Hu, H Liu, L Liu… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Point cloud learning has lately attracted increasing attention due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …

Point transformer v2: Grouped vector attention and partition-based pooling

X Wu, Y Lao, L Jiang, X Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
As a pioneering work exploring transformer architecture for 3D point cloud understanding,
Point Transformer achieves impressive results on multiple highly competitive benchmarks. In …

Stratified transformer for 3d point cloud segmentation

X Lai, J Liu, L Jiang, L Wang, H Zhao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract 3D point cloud segmentation has made tremendous progress in recent years. Most
current methods focus on aggregating local features, but fail to directly model long-range …

Spherical transformer for lidar-based 3d recognition

X Lai, Y Chen, F Lu, J Liu, J Jia - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
LiDAR-based 3D point cloud recognition has benefited various applications. Without
specially considering the LiDAR point distribution, most current methods suffer from …

2dpass: 2d priors assisted semantic segmentation on lidar point clouds

X Yan, J Gao, C Zheng, C Zheng, R Zhang… - … on Computer Vision, 2022 - Springer
As camera and LiDAR sensors capture complementary information in autonomous driving,
great efforts have been made to conduct semantic segmentation through multi-modality data …

Rethinking network design and local geometry in point cloud: A simple residual MLP framework

X Ma, C Qin, H You, H Ran, Y Fu - arXiv preprint arXiv:2202.07123, 2022 - arxiv.org
Point cloud analysis is challenging due to irregularity and unordered data structure. To
capture the 3D geometries, prior works mainly rely on exploring sophisticated local …

Point Transformer V3: Simpler Faster Stronger

X Wu, L Jiang, PS Wang, Z Liu, X Liu… - Proceedings of the …, 2024 - openaccess.thecvf.com
This paper is not motivated to seek innovation within the attention mechanism. Instead it
focuses on overcoming the existing trade-offs between accuracy and efficiency within the …

Surface representation for point clouds

H Ran, J Liu, C Wang - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Most prior work represents the shapes of point clouds by coordinates. However, it is
insufficient to describe the local geometry directly. In this paper, we present RepSurf …

Pct: Point cloud transformer

MH Guo, JX Cai, ZN Liu, TJ Mu, RR Martin… - Computational Visual …, 2021 - Springer
The irregular domain and lack of ordering make it challenging to design deep neural
networks for point cloud processing. This paper presents a novel framework named Point …