Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …

[HTML][HTML] FedSDM: Federated learning based smart decision making module for ECG data in IoT integrated Edge–Fog–Cloud computing environments

SM Rajagopal, M Supriya, R Buyya - Internet of Things, 2023 - Elsevier
Massive data collection in modern systems has paved the way for data-driven machine
learning, a promising technique for creating reliable and robust statistical models. By …

Review on security of federated learning and its application in healthcare

H Li, C Li, J Wang, A Yang, Z Ma, Z Zhang… - Future Generation …, 2023 - Elsevier
Artificial intelligence (AI) has led to a high rate of development in healthcare, and good
progress has been made on many complex medical problems. However, there is a lack of …

Make landscape flatter in differentially private federated learning

Y Shi, Y Liu, K Wei, L Shen… - Proceedings of the …, 2023 - openaccess.thecvf.com
To defend the inference attacks and mitigate the sensitive information leakages in Federated
Learning (FL), client-level Differentially Private FL (DPFL) is the de-facto standard for privacy …

Improving the model consistency of decentralized federated learning

Y Shi, L Shen, K Wei, Y Sun, B Yuan… - International …, 2023 - proceedings.mlr.press
To mitigate the privacy leakages and communication burdens of Federated Learning (FL),
decentralized FL (DFL) discards the central server and each client only communicates with …

Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspective

J Zhang, J Tian, P Yan, S Wu, H Luo, S Yin - Reliability Engineering & …, 2024 - Elsevier
Accurate remaining useful life (RUL) prediction has gained increasing attention in modern
maintenance management. Considering the data privacy requirements of distributed multi …

Federated learning over wireless device-to-device networks: Algorithms and convergence analysis

H Xing, O Simeone, S Bi - IEEE Journal on Selected Areas in …, 2021 - ieeexplore.ieee.org
The proliferation of Internet-of-Things (IoT) devices and cloud-computing applications over
siloed data centers is motivating renewed interest in the collaborative training of a shared …

BRIDGE: Byzantine-resilient decentralized gradient descent

C Fang, Z Yang, WU Bajwa - IEEE Transactions on Signal and …, 2022 - ieeexplore.ieee.org
Machine learning has begun to play a central role in many applications. A multitude of these
applications typically also involve datasets that are distributed across multiple computing …

Stability-based generalization analysis of the asynchronous decentralized SGD

X Deng, T Sun, S Li, D Li - Proceedings of the AAAI Conference on …, 2023 - ojs.aaai.org
The generalization ability often determines the success of machine learning algorithms in
practice. Therefore, it is of great theoretical and practical importance to understand and …

A collective AI via lifelong learning and sharing at the edge

A Soltoggio, E Ben-Iwhiwhu, V Braverman… - Nature Machine …, 2024 - nature.com
One vision of a future artificial intelligence (AI) is where many separate units can learn
independently over a lifetime and share their knowledge with each other. The synergy …