[HTML][HTML] The Frobenius number for sequences of triangular and tetrahedral numbers

AM Robles-Pérez, JC Rosales - Journal of Number Theory, 2018 - Elsevier
The Frobenius number for sequences of triangular and tetrahedral numbers - ScienceDirect
Skip to main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in …

Frobenius numbers and automatic sequences

J Shallit - arXiv preprint arXiv:2103.10904, 2021 - arxiv.org
The Frobenius number $ g (S) $ of a set $ S $ of non-negative integers with $\gcd 1$ is the
largest integer not expressible as a linear combination of elements of $ S $. Given a …

[HTML][HTML] Numerical semigroups generated by quadratic sequences

M Hashuga, M Herbine, A Jensen - Semigroup Forum, 2022 - Springer
We investigate numerical semigroups generated by any quadratic sequence with initial term
zero and an infinite number of terms. We find an efficient algorithm for calculating the Apéry …

[PDF][PDF] Comportamiento asintótico del número de Frobenius para semigrupos numéricos asociados a sucesiones de la forma xn= nk

JET Meléndez - 2024 - repositorio.unicordoba.edu.co
Sn, k=〈 xn+j=(n+ j) k| j∈ N〉=⟨ nk,(n+ 1) k,(n+ 2) k,...⟩ defined for all integers n≥ 1, where
k≥ 1 is a fixed integer. We prove that the embedding dimension e (Sn, 2) has linear …

[PDF][PDF] School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada shallit@ uwaterloo. ca

J Shallit - INTEGERS, 2021 - math.colgate.edu
We present a general method for computing the abelian complexity ρab s of an automatic
sequence s, provided that (a) the Parikh vectors of the length-n prefixes of s form a …