The general relativistic constraint equations
A Carlotto - Living Reviews in Relativity, 2021 - Springer
We present the state-of-the-art concerning the relativistic constraints, which describe the
geometry of hypersurfaces in a spacetime subject to the Einstein field equations. We review …
geometry of hypersurfaces in a spacetime subject to the Einstein field equations. We review …
Mathematical general relativity: a sampler
P Chruściel, G Galloway, D Pollack - Bulletin of the American Mathematical …, 2010 - ams.org
AMS :: Bulletin of the American Mathematical Society Skip to Main Content American
Mathematical Society American Mathematical Society MathSciNet Bookstore Publications …
Mathematical Society American Mathematical Society MathSciNet Bookstore Publications …
[图书][B] Compactness and stability for nonlinear elliptic equations
E Hebey - 2014 - ems.press
The book offers an expanded version of lectures given at ETH Zürich in the framework of a
Nachdiplomvorlesung. Compactness and stability for nonlinear elliptic equations in the …
Nachdiplomvorlesung. Compactness and stability for nonlinear elliptic equations in the …
Effective multiplicity for the Einstein-scalar field Lichnerowicz equation
B Premoselli - Calculus of Variations and Partial Differential …, 2015 - Springer
We prove the stability of the Einstein-scalar field Lichnerowicz equation under subcritical
perturbations of the critical nonlinearity in dimensions n= 3, 4, 5 n= 3, 4, 5. As a …
perturbations of the critical nonlinearity in dimensions n= 3, 4, 5 n= 3, 4, 5. As a …
Power law inflation
H Ringström - Communications in Mathematical Physics, 2009 - Springer
The subject of this paper is Einstein's equations coupled to a non-linear scalar field with an
exponential potential. The problem we consider is that of proving future global non-linear …
exponential potential. The problem we consider is that of proving future global non-linear …
The initial value problem in general relativity
J Isenberg - Springer handbook of spacetime, 2014 - Springer
One of the most effective ways of constructing and studying solutions of Einstein's
gravitational field equations is via the Initial Value Problem. According to this approach, one …
gravitational field equations is via the Initial Value Problem. According to this approach, one …
Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds
L Ma, J Wei - Journal de Mathématiques Pures et Appliquées, 2013 - Elsevier
In this paper, we study the stability and multiple solutions to Einstein-scalar field
Lichnerowicz equation on compact Riemannian manifolds. In particular, in dimension no …
Lichnerowicz equation on compact Riemannian manifolds. In particular, in dimension no …
A model problem for conformal parameterizations of the Einstein constraint equations
D Maxwell - Communications in mathematical physics, 2011 - Springer
We study the conformal and conformal thin sandwich (CTS) methods as candidates for
parameterizing the set vacuum initial data for the Cauchy problem of general relativity. To …
parameterizing the set vacuum initial data for the Cauchy problem of general relativity. To …
Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation
L Ma - Comptes Rendus. Mathématique, 2010 - comptes-rendus.academie-sciences …
Dans cette Note on démontre un résultat de type de Liouville des solutions régulières pour
l'équation de Lichnerowicz dans Rn. En utilisant la même méthode on détermine également …
l'équation de Lichnerowicz dans Rn. En utilisant la même méthode on détermine également …
Scalar curvature and the Einstein constraint equations
J Corvino, D Pollack - arXiv preprint arXiv:1102.5050, 2011 - arxiv.org
We survey some results on scalar curvature and properties of solutions to the Einstein
constraint equations. Topics include an extended discussion of asymptotically flat solutions …
constraint equations. Topics include an extended discussion of asymptotically flat solutions …