[HTML][HTML] Deep learning with spiking neurons: opportunities and challenges
M Pfeiffer, T Pfeil - Frontiers in neuroscience, 2018 - frontiersin.org
Spiking neural networks (SNNs) are inspired by information processing in biology, where
sparse and asynchronous binary signals are communicated and processed in a massively …
sparse and asynchronous binary signals are communicated and processed in a massively …
Advancements in algorithms and neuromorphic hardware for spiking neural networks
Artificial neural networks (ANNs) have experienced a rapid advancement for their success in
various application domains, including autonomous driving and drone vision. Researchers …
various application domains, including autonomous driving and drone vision. Researchers …
Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
Spike-driven transformer
Abstract Spiking Neural Networks (SNNs) provide an energy-efficient deep learning option
due to their unique spike-based event-driven (ie, spike-driven) paradigm. In this paper, we …
due to their unique spike-based event-driven (ie, spike-driven) paradigm. In this paper, we …
Training spiking neural networks using lessons from deep learning
The brain is the perfect place to look for inspiration to develop more efficient neural
networks. The inner workings of our synapses and neurons provide a glimpse at what the …
networks. The inner workings of our synapses and neurons provide a glimpse at what the …
Deep residual learning in spiking neural networks
Abstract Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-
based approaches due to discrete binary activation and complex spatial-temporal dynamics …
based approaches due to discrete binary activation and complex spatial-temporal dynamics …
Spikformer: When spiking neural network meets transformer
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the
self-attention mechanism. The former offers an energy-efficient and event-driven paradigm …
self-attention mechanism. The former offers an energy-efficient and event-driven paradigm …
Training high-performance low-latency spiking neural networks by differentiation on spike representation
Abstract Spiking Neural Network (SNN) is a promising energy-efficient AI model when
implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs …
implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs …
Going deeper with directly-trained larger spiking neural networks
Spiking neural networks (SNNs) are promising in a bio-plausible coding for spatio-temporal
information and event-driven signal processing, which is very suited for energy-efficient …
information and event-driven signal processing, which is very suited for energy-efficient …
Deep directly-trained spiking neural networks for object detection
Spiking neural networks (SNNs) are brain-inspired energy-efficient models that encode
information in spatiotemporal dynamics. Recently, deep SNNs trained directly have shown …
information in spatiotemporal dynamics. Recently, deep SNNs trained directly have shown …