[HTML][HTML] Natural language processing applied to mental illness detection: a narrative review

T Zhang, AM Schoene, S Ji, S Ananiadou - NPJ digital medicine, 2022 - nature.com
Mental illness is highly prevalent nowadays, constituting a major cause of distress in
people's life with impact on society's health and well-being. Mental illness is a complex multi …

A comprehensive survey on deep clustering: Taxonomy, challenges, and future directions

S Zhou, H Xu, Z Zheng, J Chen, Z Li, J Bu, J Wu… - ACM Computing …, 2024 - dl.acm.org
Clustering is a fundamental machine learning task, which aim at assigning instances into
groups so that similar samples belong to the same cluster while dissimilar samples belong …

Evaluating large language models in generating synthetic hci research data: a case study

P Hämäläinen, M Tavast, A Kunnari - … of the 2023 CHI Conference on …, 2023 - dl.acm.org
Collecting data is one of the bottlenecks of Human-Computer Interaction (HCI) research.
Motivated by this, we explore the potential of large language models (LLMs) in generating …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Self-supervised learning for electroencephalography

MH Rafiei, LV Gauthier, H Adeli… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Decades of research have shown machine learning superiority in discovering highly
nonlinear patterns embedded in electroencephalography (EEG) records compared with …

Multi-granularity cross-modal alignment for generalized medical visual representation learning

F Wang, Y Zhou, S Wang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Learning medical visual representations directly from paired radiology reports has become
an emerging topic in representation learning. However, existing medical image-text joint …

SimKGC: Simple contrastive knowledge graph completion with pre-trained language models

L Wang, W Zhao, Z Wei, J Liu - arXiv preprint arXiv:2203.02167, 2022 - arxiv.org
Knowledge graph completion (KGC) aims to reason over known facts and infer the missing
links. Text-based methods such as KGBERT (Yao et al., 2019) learn entity representations …

Self-supervised learning methods and applications in medical imaging analysis: A survey

S Shurrab, R Duwairi - PeerJ Computer Science, 2022 - peerj.com
The scarcity of high-quality annotated medical imaging datasets is a major problem that
collides with machine learning applications in the field of medical imaging analysis and …

Towards understanding grokking: An effective theory of representation learning

Z Liu, O Kitouni, NS Nolte, E Michaud… - Advances in …, 2022 - proceedings.neurips.cc
We aim to understand grokking, a phenomenon where models generalize long after
overfitting their training set. We present both a microscopic analysis anchored by an effective …

Self-guided contrastive learning for BERT sentence representations

T Kim, KM Yoo, S Lee - arXiv preprint arXiv:2106.07345, 2021 - arxiv.org
Although BERT and its variants have reshaped the NLP landscape, it still remains unclear
how best to derive sentence embeddings from such pre-trained Transformers. In this work …