Foundation models for generalist medical artificial intelligence
The exceptionally rapid development of highly flexible, reusable artificial intelligence (AI)
models is likely to usher in newfound capabilities in medicine. We propose a new paradigm …
models is likely to usher in newfound capabilities in medicine. We propose a new paradigm …
Self-supervised learning for medical image classification: a systematic review and implementation guidelines
Advancements in deep learning and computer vision provide promising solutions for
medical image analysis, potentially improving healthcare and patient outcomes. However …
medical image analysis, potentially improving healthcare and patient outcomes. However …
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
In tasks involving the interpretation of medical images, suitably trained machine-learning
models often exceed the performance of medical experts. Yet such a high-level of …
models often exceed the performance of medical experts. Yet such a high-level of …
Medclip: Contrastive learning from unpaired medical images and text
Existing vision-text contrastive learning like CLIP aims to match the paired image and
caption embeddings while pushing others apart, which improves representation …
caption embeddings while pushing others apart, which improves representation …
A visual-language foundation model for computational pathology
The accelerated adoption of digital pathology and advances in deep learning have enabled
the development of robust models for various pathology tasks across a diverse array of …
the development of robust models for various pathology tasks across a diverse array of …
Visual language pretrained multiple instance zero-shot transfer for histopathology images
Contrastive visual language pretraining has emerged as a powerful method for either
training new language-aware image encoders or augmenting existing pretrained models …
training new language-aware image encoders or augmenting existing pretrained models …
Making the most of text semantics to improve biomedical vision–language processing
Multi-modal data abounds in biomedicine, such as radiology images and reports.
Interpreting this data at scale is essential for improving clinical care and accelerating clinical …
Interpreting this data at scale is essential for improving clinical care and accelerating clinical …
Contrastive learning of medical visual representations from paired images and text
Learning visual representations of medical images (eg, X-rays) is core to medical image
understanding but its progress has been held back by the scarcity of human annotations …
understanding but its progress has been held back by the scarcity of human annotations …
Knowledge-enhanced visual-language pre-training on chest radiology images
While multi-modal foundation models pre-trained on large-scale data have been successful
in natural language understanding and vision recognition, their use in medical domains is …
in natural language understanding and vision recognition, their use in medical domains is …
[PDF][PDF] Large-scale domain-specific pretraining for biomedical vision-language processing
Contrastive pretraining on parallel image-text data has attained great success in vision-
language processing (VLP), as exemplified by CLIP and related methods. However, prior …
language processing (VLP), as exemplified by CLIP and related methods. However, prior …