Recent advances and clinical applications of deep learning in medical image analysis

X Chen, X Wang, K Zhang, KM Fung, TC Thai… - Medical image …, 2022 - Elsevier
Deep learning has received extensive research interest in developing new medical image
processing algorithms, and deep learning based models have been remarkably successful …

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection

A Waheed, M Goyal, D Gupta, A Khanna… - Ieee …, 2020 - ieeexplore.ieee.org
Coronavirus (COVID-19) is a viral disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The spread of COVID-19 seems to have a detrimental effect …

Designing deep learning studies in cancer diagnostics

A Kleppe, OJ Skrede, S De Raedt, K Liestøl… - Nature Reviews …, 2021 - nature.com
The number of publications on deep learning for cancer diagnostics is rapidly increasing,
and systems are frequently claimed to perform comparable with or better than clinicians …

Literature review: Efficient deep neural networks techniques for medical image analysis

MA Abdou - Neural Computing and Applications, 2022 - Springer
Significant evolution in deep learning took place in 2010, when software developers started
using graphical processing units for general-purpose applications. From that date, the deep …

[HTML][HTML] Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges

T Saba - Journal of infection and public health, 2020 - Elsevier
Cancer is a fatal illness often caused by genetic disorder aggregation and a variety of
pathological changes. Cancerous cells are abnormal areas often growing in any part of …

Deep learning in medical imaging and radiation therapy

B Sahiner, A Pezeshk, LM Hadjiiski, X Wang… - Medical …, 2019 - Wiley Online Library
The goals of this review paper on deep learning (DL) in medical imaging and radiation
therapy are to (a) summarize what has been achieved to date;(b) identify common and …

GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification

M Frid-Adar, I Diamant, E Klang, M Amitai… - Neurocomputing, 2018 - Elsevier
Deep learning methods, and in particular convolutional neural networks (CNNs), have led to
an enormous breakthrough in a wide range of computer vision tasks, primarily by using …

Deep learning applications in medical image analysis

J Ker, L Wang, J Rao, T Lim - Ieee Access, 2017 - ieeexplore.ieee.org
The tremendous success of machine learning algorithms at image recognition tasks in
recent years intersects with a time of dramatically increased use of electronic medical …

Deep learning: a primer for radiologists

G Chartrand, PM Cheng, E Vorontsov, M Drozdzal… - Radiographics, 2017 - pubs.rsna.org
Deep learning is a class of machine learning methods that are gaining success and
attracting interest in many domains, including computer vision, speech recognition, natural …