Evolving Markov Chains: Unsupervised Mode Discovery and Recognition from Data Streams

K Coşkun, B Tümer, BC Hiller, M Becker - arXiv preprint arXiv:2411.17528, 2024 - arxiv.org
Markov chains are simple yet powerful mathematical structures to model temporally
dependent processes. They generally assume stationary data, ie, fixed transition …

Learning under concept drift and non-stationary noise: Introduction of the concept of persistence

K Coşkun, B Tümer - Engineering Applications of Artificial Intelligence, 2023 - Elsevier
Learning from noisy data is a challenging task especially when the system under
consideration has a non-stationary nature. The source of the noise is often assumed to be …

[PDF][PDF] Incremental Learning of Spatio-temporal Markov Chains: an Introductory Theoretical Framework for Composite Domain Markov Chains

Z Kumralbaş, B Tümer - Authorea Preprints, 2024 - techrxiv.org
Temporal dependence (TD) is a fundamental concept exploited for modeling real world
systems' behavior of sequential nature. Markov chains (MCs) are powerful tools capable of …

Incremental Construction of Markov Chains with Dependence on Non-Temporal Domains

Z Kumralbaş - 2024 - search.proquest.com
Zamansal bağımlılık, birçok gerçek dünya sisteminin ardışıklık içeren davranışını
modellemek için kullanılan temel bir kavramdır. Markov zincirleri, belirtilen olasılık …