A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Algorithmic fairness: Choices, assumptions, and definitions

S Mitchell, E Potash, S Barocas… - Annual review of …, 2021 - annualreviews.org
A recent wave of research has attempted to define fairness quantitatively. In particular, this
work has explored what fairness might mean in the context of decisions based on the …

Should chatgpt be biased? challenges and risks of bias in large language models

E Ferrara - arXiv preprint arXiv:2304.03738, 2023 - arxiv.org
As the capabilities of generative language models continue to advance, the implications of
biases ingrained within these models have garnered increasing attention from researchers …

Auditing large language models: a three-layered approach

J Mökander, J Schuett, HR Kirk, L Floridi - AI and Ethics, 2023 - Springer
Large language models (LLMs) represent a major advance in artificial intelligence (AI)
research. However, the widespread use of LLMs is also coupled with significant ethical and …

[图书][B] Towards a standard for identifying and managing bias in artificial intelligence

R Schwartz, R Schwartz, A Vassilev, K Greene… - 2022 - dwt.com
As individuals and communities interact in and with an environment that is increasingly
virtual, they are often vulnerable to the commodification of their digital footprint. Concepts …

The fallacy of AI functionality

ID Raji, IE Kumar, A Horowitz, A Selbst - … of the 2022 ACM Conference on …, 2022 - dl.acm.org
Deployed AI systems often do not work. They can be constructed haphazardly, deployed
indiscriminately, and promoted deceptively. However, despite this reality, scholars, the …

Predictability and surprise in large generative models

D Ganguli, D Hernandez, L Lovitt, A Askell… - Proceedings of the …, 2022 - dl.acm.org
Large-scale pre-training has recently emerged as a technique for creating capable, general-
purpose, generative models such as GPT-3, Megatron-Turing NLG, Gopher, and many …

Evaluating the social impact of generative ai systems in systems and society

I Solaiman, Z Talat, W Agnew, L Ahmad… - arXiv preprint arXiv …, 2023 - arxiv.org
Generative AI systems across modalities, ranging from text, image, audio, and video, have
broad social impacts, but there exists no official standard for means of evaluating those …

Five sources of bias in natural language processing

D Hovy, S Prabhumoye - Language and linguistics compass, 2021 - Wiley Online Library
Recently, there has been an increased interest in demographically grounded bias in natural
language processing (NLP) applications. Much of the recent work has focused on describing …

[HTML][HTML] From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices

J Morley, L Floridi, L Kinsey, A Elhalal - Science and engineering ethics, 2020 - Springer
The debate about the ethical implications of Artificial Intelligence dates from the 1960s
(Samuel in Science, 132 (3429): 741–742, 1960. https://doi. org/10.1126/science. 132.3429 …