[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …
deep learning (DL) techniques, which have demonstrated promising results in a wide range …
An introductory review of deep learning for prediction models with big data
Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and
machine learning. Recent breakthrough results in image analysis and speech recognition …
machine learning. Recent breakthrough results in image analysis and speech recognition …
Low-rank and sparse representation for hyperspectral image processing: A review
Combining rich spectral and spatial information, a hyperspectral image (HSI) can provide a
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …
Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
In recent years, deep learning (DL), a rebranding of neural networks (NNs), has risen to the
top in numerous areas, namely computer vision (CV), speech recognition, and natural …
top in numerous areas, namely computer vision (CV), speech recognition, and natural …
Hyperspectral pansharpening: A review
L Loncan, LB De Almeida… - … and remote sensing …, 2015 - ieeexplore.ieee.org
Pansharpening aims at fusing a panchromatic image with a multispectral one, to generate
an image with the high spatial resolution of the former and the high spectral resolution of the …
an image with the high spatial resolution of the former and the high spectral resolution of the …
A convex formulation for hyperspectral image superresolution via subspace-based regularization
Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low
spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and …
spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and …
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
Imaging spectrometers measure electromagnetic energy scattered in their instantaneous
field view in hundreds or thousands of spectral channels with higher spectral resolution than …
field view in hundreds or thousands of spectral channels with higher spectral resolution than …
Total variation spatial regularization for sparse hyperspectral unmixing
MD Iordache, JM Bioucas-Dias… - IEEE Transactions on …, 2012 - ieeexplore.ieee.org
Spectral unmixing aims at estimating the fractional abundances of pure spectral signatures
(also called endmembers) in each mixed pixel collected by a remote sensing hyperspectral …
(also called endmembers) in each mixed pixel collected by a remote sensing hyperspectral …
A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
Blind hyperspectral unmixing (HU), also known as unsupervised HU, is one of the most
prominent research topics in signal processing (SP) for hyperspectral remote sensing [1],[2] …
prominent research topics in signal processing (SP) for hyperspectral remote sensing [1],[2] …
Sparse modeling for image and vision processing
In recent years, a large amount of multi-disciplinary research has been conducted on sparse
models and their applications. In statistics and machine learning, the sparsity principle is …
models and their applications. In statistics and machine learning, the sparsity principle is …