Large language models for software engineering: A systematic literature review

X Hou, Y Zhao, Y Liu, Z Yang, K Wang, L Li… - ACM Transactions on …, 2023 - dl.acm.org
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …

Software testing with large language models: Survey, landscape, and vision

J Wang, Y Huang, C Chen, Z Liu… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Pre-trained large language models (LLMs) have recently emerged as a breakthrough
technology in natural language processing and artificial intelligence, with the ability to …

Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation

Y Wang, W Wang, S Joty, SCH Hoi - arXiv preprint arXiv:2109.00859, 2021 - arxiv.org
Pre-trained models for Natural Languages (NL) like BERT and GPT have been recently
shown to transfer well to Programming Languages (PL) and largely benefit a broad set of …

Unified pre-training for program understanding and generation

WU Ahmad, S Chakraborty, B Ray… - arXiv preprint arXiv …, 2021 - arxiv.org
Code summarization and generation empower conversion between programming language
(PL) and natural language (NL), while code translation avails the migration of legacy code …

Codexglue: A machine learning benchmark dataset for code understanding and generation

S Lu, D Guo, S Ren, J Huang, A Svyatkovskiy… - arXiv preprint arXiv …, 2021 - arxiv.org
Benchmark datasets have a significant impact on accelerating research in programming
language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster …

LineVD: statement-level vulnerability detection using graph neural networks

D Hin, A Kan, H Chen, MA Babar - Proceedings of the 19th international …, 2022 - dl.acm.org
Current machine-learning based software vulnerability detection methods are primarily
conducted at the function-level. However, a key limitation of these methods is that they do …

Unsupervised translation of programming languages

B Roziere, MA Lachaux… - Advances in neural …, 2020 - proceedings.neurips.cc
A transcompiler, also known as source-to-source translator, is a system that converts source
code from a high-level programming language (such as C++ or Python) to another …

A survey on deep learning for software engineering

Y Yang, X Xia, D Lo, J Grundy - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
In 2006, Geoffrey Hinton proposed the concept of training “Deep Neural Networks (DNNs)”
and an improved model training method to break the bottleneck of neural network …

MVD: memory-related vulnerability detection based on flow-sensitive graph neural networks

S Cao, X Sun, L Bo, R Wu, B Li, C Tao - Proceedings of the 44th …, 2022 - dl.acm.org
Memory-related vulnerabilities constitute severe threats to the security of modern software.
Despite the success of deep learning-based approaches to generic vulnerability detection …

Bridging pre-trained models and downstream tasks for source code understanding

D Wang, Z Jia, S Li, Y Yu, Y Xiong, W Dong… - Proceedings of the 44th …, 2022 - dl.acm.org
With the great success of pre-trained models, the pretrain-then-finetune paradigm has been
widely adopted on downstream tasks for source code understanding. However, compared to …