Large language models for software engineering: A systematic literature review
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …
Software Engineering (SE). Many recent publications have explored LLMs applied to …
Software testing with large language models: Survey, landscape, and vision
Pre-trained large language models (LLMs) have recently emerged as a breakthrough
technology in natural language processing and artificial intelligence, with the ability to …
technology in natural language processing and artificial intelligence, with the ability to …
Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation
Pre-trained models for Natural Languages (NL) like BERT and GPT have been recently
shown to transfer well to Programming Languages (PL) and largely benefit a broad set of …
shown to transfer well to Programming Languages (PL) and largely benefit a broad set of …
Unified pre-training for program understanding and generation
Code summarization and generation empower conversion between programming language
(PL) and natural language (NL), while code translation avails the migration of legacy code …
(PL) and natural language (NL), while code translation avails the migration of legacy code …
Codexglue: A machine learning benchmark dataset for code understanding and generation
Benchmark datasets have a significant impact on accelerating research in programming
language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster …
language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster …
LineVD: statement-level vulnerability detection using graph neural networks
Current machine-learning based software vulnerability detection methods are primarily
conducted at the function-level. However, a key limitation of these methods is that they do …
conducted at the function-level. However, a key limitation of these methods is that they do …
Unsupervised translation of programming languages
B Roziere, MA Lachaux… - Advances in neural …, 2020 - proceedings.neurips.cc
A transcompiler, also known as source-to-source translator, is a system that converts source
code from a high-level programming language (such as C++ or Python) to another …
code from a high-level programming language (such as C++ or Python) to another …
A survey on deep learning for software engineering
In 2006, Geoffrey Hinton proposed the concept of training “Deep Neural Networks (DNNs)”
and an improved model training method to break the bottleneck of neural network …
and an improved model training method to break the bottleneck of neural network …
MVD: memory-related vulnerability detection based on flow-sensitive graph neural networks
Memory-related vulnerabilities constitute severe threats to the security of modern software.
Despite the success of deep learning-based approaches to generic vulnerability detection …
Despite the success of deep learning-based approaches to generic vulnerability detection …
Bridging pre-trained models and downstream tasks for source code understanding
With the great success of pre-trained models, the pretrain-then-finetune paradigm has been
widely adopted on downstream tasks for source code understanding. However, compared to …
widely adopted on downstream tasks for source code understanding. However, compared to …