Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare

Z Jia, X Xu, D Zhu, Y Zheng - Progress in Materials Science, 2023 - Elsevier
Trauma-and disease-related skeletal defects and illnesses are plaguing millions of people
especially in an ageing globe. Recently, the convergence of additive manufacturing (AM) …

[HTML][HTML] An overview on materials and techniques in 3D bioprinting toward biomedical application

S Vanaei, MS Parizi, F Salemizadehparizi… - Engineered …, 2021 - Elsevier
Abstract Three-dimensional (3D) bioprinting, an additive manufacturing based technique of
biomaterials fabrication, is an innovative and auspicious strategy in medical and …

[HTML][HTML] Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications

YW Ding, XW Zhang, CH Mi, XY Qi, J Zhou… - Smart Materials in …, 2023 - Elsevier
Abstract 3D bioprinting technology can rapidly process cell-loaded biomaterials to prepare
personalized scaffolds for repairing defective tissues, tissue regeneration, and even printing …

Crosslinking strategies for 3D bioprinting of polymeric hydrogels

A GhavamiNejad, N Ashammakhi, XY Wu… - Small, 2020 - Wiley Online Library
Abstract Three‐dimensional (3D) bioprinting has recently advanced as an important tool to
produce viable constructs that can be used for regenerative purposes or as tissue models …

Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques

M Askari, MA Naniz, M Kouhi, A Saberi… - Biomaterials …, 2021 - pubs.rsc.org
Over the last decade, 3D bioprinting has received immense attention from research
communities for developing functional tissues. Thanks to the complexity of tissues, various …

Opportunities and challenges of translational 3D bioprinting

SV Murphy, P De Coppi, A Atala - Nature biomedical engineering, 2020 - nature.com
Abstract 3D-printed orthopaedic devices and surgical tools, printed maxillofacial implants
and other printed acellular devices have been used in patients. By contrast, bioprinted living …

From shape to function: the next step in bioprinting

R Levato, T Jungst, RG Scheuring, T Blunk… - Advanced …, 2020 - Wiley Online Library
Abstract In 2013, the “biofabrication window” was introduced to reflect the processing
challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable …

[HTML][HTML] 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances

S Derakhshanfar, R Mbeleck, K Xu, X Zhang, W Zhong… - Bioactive materials, 2018 - Elsevier
Abstract 3D printing, an additive manufacturing based technology for precise 3D
construction, is currently widely employed to enhance applicability and function of cell laden …

[HTML][HTML] 3D bioactive composite scaffolds for bone tissue engineering

G Turnbull, J Clarke, F Picard, P Riches, L Jia, F Han… - Bioactive materials, 2018 - Elsevier
Bone is the second most commonly transplanted tissue worldwide, with over four million
operations using bone grafts or bone substitute materials annually to treat bone defects …

Recent trends in bioinks for 3D printing

J Gopinathan, I Noh - Biomaterials research, 2018 - spj.science.org
Background The worldwide demand for the organ replacement or tissue regeneration is
increasing steadily. The advancements in tissue engineering and regenerative medicine …