A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arXiv preprint arXiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Sam-clip: Merging vision foundation models towards semantic and spatial understanding

H Wang, PKA Vasu, F Faghri… - Proceedings of the …, 2024 - openaccess.thecvf.com
The landscape of publicly available vision foundation models (VFMs) such as CLIP and
SAM is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their …

Continual test-time domain adaptation

Q Wang, O Fink, L Van Gool… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …

Dualprompt: Complementary prompting for rehearsal-free continual learning

Z Wang, Z Zhang, S Ebrahimi, R Sun, H Zhang… - … on Computer Vision, 2022 - Springer
Continual learning aims to enable a single model to learn a sequence of tasks without
catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store …

Learning to prompt for continual learning

Z Wang, Z Zhang, CY Lee, H Zhang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The mainstream paradigm behind continual learning has been to adapt the model
parameters to non-stationary data distributions, where catastrophic forgetting is the central …

Robust fine-tuning of zero-shot models

M Wortsman, G Ilharco, JW Kim, M Li… - Proceedings of the …, 2022 - openaccess.thecvf.com
Large pre-trained models such as CLIP or ALIGN offer consistent accuracy across a range of
data distributions when performing zero-shot inference (ie, without fine-tuning on a specific …

Biological underpinnings for lifelong learning machines

D Kudithipudi, M Aguilar-Simon, J Babb… - Nature Machine …, 2022 - nature.com
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …