A comprehensive survey on transfer learning

F Zhuang, Z Qi, K Duan, D Xi, Y Zhu… - Proceedings of the …, 2020 - ieeexplore.ieee.org
Transfer learning aims at improving the performance of target learners on target domains by
transferring the knowledge contained in different but related source domains. In this way, the …

Deep learning in mobile and wireless networking: A survey

C Zhang, P Patras, H Haddadi - IEEE Communications surveys …, 2019 - ieeexplore.ieee.org
The rapid uptake of mobile devices and the rising popularity of mobile applications and
services pose unprecedented demands on mobile and wireless networking infrastructure …

Transfer learning promotes 6G wireless communications: Recent advances and future challenges

M Wang, Y Lin, Q Tian, G Si - IEEE Transactions on Reliability, 2021 - ieeexplore.ieee.org
In the coming 6G communications, network densification, high throughput, positioning
accuracy, energy efficiency, and many other key performance indicator requirements are …

Application of machine learning in wireless networks: Key techniques and open issues

Y Sun, M Peng, Y Zhou, Y Huang… - … Surveys & Tutorials, 2019 - ieeexplore.ieee.org
As a key technique for enabling artificial intelligence, machine learning (ML) is capable of
solving complex problems without explicit programming. Motivated by its successful …

Ultrareliable and low-latency wireless communication: Tail, risk, and scale

M Bennis, M Debbah, HV Poor - Proceedings of the IEEE, 2018 - ieeexplore.ieee.org
Ensuring ultrareliable and low-latency communication (URLLC) for 5G wireless networks
and beyond is of capital importance and is currently receiving tremendous attention in …

A survey of machine learning techniques applied to self-organizing cellular networks

PV Klaine, MA Imran, O Onireti… - … Surveys & Tutorials, 2017 - ieeexplore.ieee.org
In this paper, a survey of the literature of the past 15 years involving machine learning (ML)
algorithms applied to self-organizing cellular networks is performed. In order for future …

Unsupervised machine learning for networking: Techniques, applications and research challenges

M Usama, J Qadir, A Raza, H Arif, KLA Yau… - IEEE …, 2019 - ieeexplore.ieee.org
While machine learning and artificial intelligence have long been applied in networking
research, the bulk of such works has focused on supervised learning. Recently, there has …

A survey of 5G network systems: challenges and machine learning approaches

H Fourati, R Maaloul, L Chaari - International Journal of Machine Learning …, 2021 - Springer
Abstract 5G cellular networks are expected to be the key infrastructure to deliver the
emerging services. These services bring new requirements and challenges that obstruct the …

The role of caching in future communication systems and networks

GS Paschos, G Iosifidis, M Tao… - IEEE Journal on …, 2018 - ieeexplore.ieee.org
This paper has the following ambitious goal: to convince the reader that content caching is
an exciting research topic for the future communication systems and networks. Caching has …

Towards artificial intelligence enabled 6G: State of the art, challenges, and opportunities

S Zhang, D Zhu - Computer Networks, 2020 - Elsevier
Abstract 6G is expected to support the unprecedented Internet of everything scenarios with
extremely diverse and challenging requirements. To fulfill such diverse requirements …