A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics

MA Azam, KB Khan, S Salahuddin, E Rehman… - Computers in biology …, 2022 - Elsevier
Background and objectives Over the past two decades, medical imaging has been
extensively apply to diagnose diseases. Medical experts continue to have difficulties for …

A brief review of domain adaptation

A Farahani, S Voghoei, K Rasheed… - Advances in data science …, 2021 - Springer
Classical machine learning assumes that the training and test sets come from the same
distributions. Therefore, a model learned from the labeled training data is expected to …

[PDF][PDF] 卷积神经网络研究综述

周飞燕, 金林鹏, 董军 - 计算机学报, 2017 - cjc.ict.ac.cn
摘要作为一个十余年来快速发展的崭新领域, 深度学习受到了越来越多研究者的关注,
它在特征提取和模型拟合上都有着相较于浅层模型显然的优势. 深度学习善于从原始输入数据中 …

[PDF][PDF] 深度学习研究综述

尹宝才, 王文通, 王立春 - 北京工业大学学报, 2015 - globalhha.com
鉴于深度学习在学术界和工业界的重要性, 依据数据流向对目前有代表性的深度学习算法进行
归纳和总结, 综述了不同类型深度网络的结构及特点. 首先介绍了深度学习的概念; …

Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes

H Pan, Y Hong, W Sun, Y Jia - IEEE Transactions on Intelligent …, 2022 - ieeexplore.ieee.org
Using light-weight architectures or reasoning on low-resolution images, recent methods
realize very fast scene parsing, even running at more than 100 FPS on a single GPU …

Anomaly detection via reverse distillation from one-class embedding

H Deng, X Li - Proceedings of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Abstract Knowledge distillation (KD) achieves promising results on the challenging problem
of unsupervised anomaly detection (AD). The representation discrepancy of anomalies in …

Contrastive clustering

Y Li, P Hu, Z Liu, D Peng, JT Zhou… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
In this paper, we propose an online clustering method called Contrastive Clustering (CC)
which explicitly performs the instance-and cluster-level contrastive learning. To be specific …

Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes

Y Hong, H Pan, W Sun, Y Jia - arXiv preprint arXiv:2101.06085, 2021 - arxiv.org
Semantic segmentation is a key technology for autonomous vehicles to understand the
surrounding scenes. The appealing performances of contemporary models usually come at …

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

AB Arrieta, N Díaz-Rodríguez, J Del Ser, A Bennetot… - Information fusion, 2020 - Elsevier
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …

Colloquium: Machine learning in nuclear physics

A Boehnlein, M Diefenthaler, N Sato, M Schram… - Reviews of modern …, 2022 - APS
Advances in machine learning methods provide tools that have broad applicability in
scientific research. These techniques are being applied across the diversity of nuclear …