Dissociating language and thought in large language models

K Mahowald, AA Ivanova, IA Blank, N Kanwisher… - Trends in Cognitive …, 2024 - cell.com
Large language models (LLMs) have come closest among all models to date to mastering
human language, yet opinions about their linguistic and cognitive capabilities remain split …

[HTML][HTML] Using artificial neural networks to ask 'why'questions of minds and brains

N Kanwisher, M Khosla, K Dobs - Trends in Neurosciences, 2023 - cell.com
Neuroscientists have long characterized the properties and functions of the nervous system,
and are increasingly succeeding in answering how brains perform the tasks they do. But the …

Partial success in closing the gap between human and machine vision

R Geirhos, K Narayanappa, B Mitzkus… - Advances in …, 2021 - proceedings.neurips.cc
A few years ago, the first CNN surpassed human performance on ImageNet. However, it
soon became clear that machines lack robustness on more challenging test cases, a major …

The neuroconnectionist research programme

A Doerig, RP Sommers, K Seeliger… - Nature Reviews …, 2023 - nature.com
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to
model behavioural and neural data, an approach we call 'neuroconnectionism'. ANNs have …

Deep problems with neural network models of human vision

JS Bowers, G Malhotra, M Dujmović… - Behavioral and Brain …, 2023 - cambridge.org
Deep neural networks (DNNs) have had extraordinary successes in classifying
photographic images of objects and are often described as the best models of biological …

Consciousness in artificial intelligence: insights from the science of consciousness

P Butlin, R Long, E Elmoznino, Y Bengio… - arXiv preprint arXiv …, 2023 - arxiv.org
Whether current or near-term AI systems could be conscious is a topic of scientific interest
and increasing public concern. This report argues for, and exemplifies, a rigorous and …

Getting aligned on representational alignment

I Sucholutsky, L Muttenthaler, A Weller, A Peng… - arXiv preprint arXiv …, 2023 - arxiv.org
Biological and artificial information processing systems form representations that they can
use to categorize, reason, plan, navigate, and make decisions. How can we measure the …

Model metamers reveal divergent invariances between biological and artificial neural networks

J Feather, G Leclerc, A Mądry, JH McDermott - Nature Neuroscience, 2023 - nature.com
Deep neural network models of sensory systems are often proposed to learn
representational transformations with invariances like those in the brain. To reveal these …

Brain-like functional specialization emerges spontaneously in deep neural networks

K Dobs, J Martinez, AJE Kell, N Kanwisher - Science advances, 2022 - science.org
The human brain contains multiple regions with distinct, often highly specialized functions,
from recognizing faces to understanding language to thinking about what others are …

An ecologically motivated image dataset for deep learning yields better models of human vision

J Mehrer, CJ Spoerer, EC Jones… - Proceedings of the …, 2021 - National Acad Sciences
Deep neural networks provide the current best models of visual information processing in
the primate brain. Drawing on work from computer vision, the most commonly used networks …