Towards a mathematical definition of Coulomb branches of -dimensional gauge theories, I

H Nakajima - arXiv preprint arXiv:1503.03676, 2015 - arxiv.org
Consider the $3 $-dimensional $\mathcal N= 4$ supersymmetric gauge theory associated
with a compact Lie group $ G $ and its quaternionic representation $\mathbf M $. Physicists …

Counting sheaves on Calabi–Yau 4-folds, I

J Oh, RP Thomas - Duke Mathematical Journal, 2023 - projecteuclid.org
Borisov and Joyce constructed a real virtual cycle on compact moduli spaces of stable
sheaves on Calabi–Yau 4-folds, using derived differential geometry. We construct an …

The finiteness conjecture for skein modules

S Gunningham, D Jordan, P Safronov - Inventiones mathematicae, 2023 - Springer
The finiteness conjecture for skein modules | Inventiones mathematicae Skip to main content
SpringerLink Account Menu Find a journal Publish with us Track your research Search Cart …

Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds

D Borisov, D Joyce - Geometry & Topology, 2017 - msp.org
Abstract Let (X, ω X∗) be a separated,− 2–shifted symplectic derived ℂ–scheme, in the
sense of Pantev, Toën, Vezzosi and Vaquié (2013), of complex virtual dimension vdim ℂ X …

Gopakumar–Vafa invariants via vanishing cycles

D Maulik, Y Toda - Inventiones mathematicae, 2018 - Springer
In this paper, we propose an ansatz for defining Gopakumar–Vafa invariants of Calabi–Yau
threefolds, using perverse sheaves of vanishing cycles. Our proposal is a modification of a …

Secondary products in supersymmetric field theory

C Beem, D Ben-Zvi, M Bullimore, T Dimofte… - Annales Henri …, 2020 - Springer
The product of local operators in a topological quantum field theory in dimension greater
than one is commutative, as is more generally the product of extended operators of …

Symmetries and stabilization for sheaves of vanishing cycles

C Brav, V Bussi, D Dupont, D Joyce… - arXiv preprint arXiv …, 2012 - arxiv.org
Let $ U $ be a smooth $\mathbb C $-scheme, $ f: U\to\mathbb A^ 1$ a regular function, and
$ X= $ Crit $(f) $ the critical locus, as a $\mathbb C $-subscheme of $ U $. Then one can …

A classical model for derived critical loci

D Joyce - Journal of Differential Geometry, 2015 - projecteuclid.org
Let $ f: U\to\mathbb {A}^ 1$ be a regular function on a smooth scheme $ U $ over a field
$\mathbb {K} $. Pantev, Toën, Vaquié and Vezzosi [30, 37] define the 'derived critical …

Quasimaps to quivers with potentials

Y Cao, G Zhao - arXiv preprint arXiv:2306.01302, 2023 - arxiv.org
This paper is concerned with a non-compact GIT quotient of a vector space, in the presence
of an abelian group action and an equivariant regular function (potential) on the quotient …

Vafa-Witten invariants for projective surfaces II: semistable case

Y Tanaka, RP Thomas - arXiv preprint arXiv:1702.08488, 2017 - arxiv.org
We propose a definition of Vafa-Witten invariants counting semistable Higgs pairs on a
polarised surface. We use virtual localisation applied to Mochizuki/Joyce-Song pairs. For …