Learning quantum systems
The future development of quantum technologies relies on creating and manipulating
quantum systems of increasing complexity, with key applications in computation, simulation …
quantum systems of increasing complexity, with key applications in computation, simulation …
Quantum simulation of fundamental particles and forces
Key static and dynamic properties of matter—from creation in the Big Bang to evolution into
subatomic and astrophysical environments—arise from the underlying fundamental …
subatomic and astrophysical environments—arise from the underlying fundamental …
Group-invariant quantum machine learning
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
Observing the quantum Mpemba effect in quantum simulations
The nonequilibrium physics of many-body quantum systems harbors various unconventional
phenomena. In this Letter, we experimentally investigate one of the most puzzling of these …
phenomena. In this Letter, we experimentally investigate one of the most puzzling of these …
Many-body localization in the age of classical computing
Statistical mechanics provides a framework for describing the physics of large, complex
many-body systems using only a few macroscopic parameters to determine the state of the …
many-body systems using only a few macroscopic parameters to determine the state of the …
Quantum-centric supercomputing for materials science: A perspective on challenges and future directions
Computational models are an essential tool for the design, characterization, and discovery
of novel materials. Computationally hard tasks in materials science stretch the limits of …
of novel materials. Computationally hard tasks in materials science stretch the limits of …
Shallow shadows: Expectation estimation using low-depth random Clifford circuits
We provide practical and powerful schemes for learning properties of a quantum state using
a small number of measurements. Specifically, we present a randomized measurement …
a small number of measurements. Specifically, we present a randomized measurement …
Introduction to Haar Measure Tools in Quantum Information: A Beginner's Tutorial
AA Mele - Quantum, 2024 - quantum-journal.org
The Haar measure plays a vital role in quantum information, but its study often requires a
deep understanding of representation theory, posing a challenge for beginners. This tutorial …
deep understanding of representation theory, posing a challenge for beginners. This tutorial …
Learning many-body Hamiltonians with Heisenberg-limited scaling
Learning a many-body Hamiltonian from its dynamics is a fundamental problem in physics.
In this Letter, we propose the first algorithm to achieve the Heisenberg limit for learning an …
In this Letter, we propose the first algorithm to achieve the Heisenberg limit for learning an …
Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing
A large amount of effort has recently been put into understanding the barren plateau
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …