When large language models meet personalization: Perspectives of challenges and opportunities

J Chen, Z Liu, X Huang, C Wu, Q Liu, G Jiang, Y Pu… - World Wide Web, 2024 - Springer
The advent of large language models marks a revolutionary breakthrough in artificial
intelligence. With the unprecedented scale of training and model parameters, the capability …

From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

Graph learning based recommender systems: A review

S Wang, L Hu, Y Wang, X He, QZ Sheng… - arXiv preprint arXiv …, 2021 - arxiv.org
Recent years have witnessed the fast development of the emerging topic of Graph Learning
based Recommender Systems (GLRS). GLRS employ advanced graph learning …

Explainable recommendation: A survey and new perspectives

Y Zhang, X Chen - Foundations and Trends® in Information …, 2020 - nowpublishers.com
Explainable recommendation attempts to develop models that generate not only high-quality
recommendations but also intuitive explanations. The explanations may either be post-hoc …

Leveraging large language models in conversational recommender systems

L Friedman, S Ahuja, D Allen, Z Tan… - arXiv preprint arXiv …, 2023 - arxiv.org
A Conversational Recommender System (CRS) offers increased transparency and control to
users by enabling them to engage with the system through a real-time multi-turn dialogue …

Counterfactual explainable recommendation

J Tan, S Xu, Y Ge, Y Li, X Chen, Y Zhang - Proceedings of the 30th ACM …, 2021 - dl.acm.org
By providing explanations for users and system designers to facilitate better understanding
and decision making, explainable recommendation has been an important research …

[HTML][HTML] Explainable, trustworthy, and ethical machine learning for healthcare: A survey

K Rasheed, A Qayyum, M Ghaly, A Al-Fuqaha… - Computers in Biology …, 2022 - Elsevier
With the advent of machine learning (ML) and deep learning (DL) empowered applications
for critical applications like healthcare, the questions about liability, trust, and interpretability …

Fairness-aware explainable recommendation over knowledge graphs

Z Fu, Y Xian, R Gao, J Zhao, Q Huang, Y Ge… - Proceedings of the 43rd …, 2020 - dl.acm.org
There has been growing attention on fairness considerations recently, especially in the
context of intelligent decision making systems. For example, explainable recommendation …

[HTML][HTML] A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

Y Himeur, A Alsalemi, A Al-Kababji, F Bensaali… - Information …, 2021 - Elsevier
Recommender systems have significantly developed in recent years in parallel with the
witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) …

Survey on deep multi-modal data analytics: Collaboration, rivalry, and fusion

Y Wang - ACM Transactions on Multimedia Computing …, 2021 - dl.acm.org
With the development of web technology, multi-modal or multi-view data has surged as a
major stream for big data, where each modal/view encodes individual property of data …