Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries

P Xiao, X Yun, Y Chen, X Guo, P Gao, G Zhou… - Chemical Society …, 2023 - pubs.rsc.org
Lithium-based rechargeable batteries have dominated the energy storage field and attracted
considerable research interest due to their excellent electrochemical performance. As …

Li-S batteries: challenges, achievements and opportunities

H Raza, S Bai, J Cheng, S Majumder, H Zhu… - Electrochemical Energy …, 2023 - Springer
To realize a low-carbon economy and sustainable energy supply, the development of
energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are …

Electrolyte solutions design for lithium-sulfur batteries

Y Liu, Y Elias, J Meng, D Aurbach, R Zou, D Xia… - Joule, 2021 - cell.com
Summary Lithium-sulfur (Li-S) batteries promise high energy density for next-generation
energy storage systems, yet many challenges remain. Li-S batteries follow a conversion …

A review on mechanochemistry: Approaching advanced energy materials with greener force

X Liu, Y Li, L Zeng, X Li, N Chen, S Bai, H He… - Advanced …, 2022 - Wiley Online Library
Mechanochemistry with solvent‐free and environmentally friendly characteristics is one of
the most promising alternatives to traditional liquid‐phase‐based reactions, demonstrating …

Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries

LP Hou, XQ Zhang, BQ Li, Q Zhang - Materials Today, 2021 - Elsevier
The lithium–sulfur (Li–S) battery has raised great expectations as a next-generation high-
energy-density energy storage system. The multielectron dissolution–precipitation redox …

Current status and future prospects of metal–sulfur batteries

SH Chung, A Manthiram - Advanced Materials, 2019 - Wiley Online Library
Lithium–sulfur batteries are a major focus of academic and industrial energy‐storage
research due to their high theoretical energy density and the use of low‐cost materials. The …

Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long‐cycling lithium–sulfur batteries

LP Hou, Z Li, N Yao, CX Bi, BQ Li, X Chen… - Advanced …, 2022 - Wiley Online Library
Long cycling lifespan is a prerequisite for practical lithium–sulfur batteries yet is restricted by
side reactions between soluble polysulfides and the lithium‐metal anode. The regulation on …

Review on high‐loading and high‐energy lithium–sulfur batteries

HJ Peng, JQ Huang, XB Cheng… - Advanced Energy …, 2017 - Wiley Online Library
Owing to high specific energy, low cost, and environmental friendliness, lithium–sulfur (Li–S)
batteries hold great promise to meet the increasing demand for advanced energy storage …

More reliable lithium‐sulfur batteries: status, solutions and prospects

R Fang, S Zhao, Z Sun, DW Wang… - Advanced …, 2017 - Wiley Online Library
Abstract Lithium‐sulfur (Li‐S) batteries have attracted tremendous interest because of their
high theoretical energy density and cost effectiveness. The target of Li‐S battery research is …

Revisiting the role of polysulfides in lithium–sulfur batteries

G Li, S Wang, Y Zhang, M Li, Z Chen… - Advanced Materials, 2018 - Wiley Online Library
Intermediate polysulfides (Sn, where n= 2–8) play a critical role in both mechanistic
understanding and performance improvement of lithium–sulfur batteries. The rational …