Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
Quantum advantage in learning from experiments
Quantum technology promises to revolutionize how we learn about the physical world. An
experiment that processes quantum data with a quantum computer could have substantial …
experiment that processes quantum data with a quantum computer could have substantial …
Quantum variational algorithms are swamped with traps
ER Anschuetz, BT Kiani - Nature Communications, 2022 - nature.com
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …
trainable they are, though their training algorithms typically rely on optimizing complicated …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
Realization of an error-correcting surface code with superconducting qubits
Quantum error correction is a critical technique for transitioning from noisy intermediate-
scale quantum devices to fully fledged quantum computers. The surface code, which has a …
scale quantum devices to fully fledged quantum computers. The surface code, which has a …
Power of data in quantum machine learning
The use of quantum computing for machine learning is among the most exciting prospective
applications of quantum technologies. However, machine learning tasks where data is …
applications of quantum technologies. However, machine learning tasks where data is …
Is quantum advantage the right goal for quantum machine learning?
M Schuld, N Killoran - Prx Quantum, 2022 - APS
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …
computing. This is in fact a curious choice: the machine-learning algorithms of today are …
Provably efficient machine learning for quantum many-body problems
Classical machine learning (ML) provides a potentially powerful approach to solving
challenging quantum many-body problems in physics and chemistry. However, the …
challenging quantum many-body problems in physics and chemistry. However, the …
Theory of overparametrization in quantum neural networks
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is
exciting. Understanding how QNN properties (for example, the number of parameters M) …
exciting. Understanding how QNN properties (for example, the number of parameters M) …