Printability and shape fidelity of bioinks in 3D bioprinting

A Schwab, R Levato, M D'Este, S Piluso, D Eglin… - Chemical …, 2020 - ACS Publications
Three-dimensional bioprinting uses additive manufacturing techniques for the automated
fabrication of hierarchically organized living constructs. The building blocks are often …

[HTML][HTML] Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics

AG Kurian, RK Singh, KD Patel, JH Lee, HW Kim - Bioactive materials, 2022 - Elsevier
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery
systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) …

Progress in 3D bioprinting technology for tissue/organ regenerative engineering

I Matai, G Kaur, A Seyedsalehi, A McClinton… - Biomaterials, 2020 - Elsevier
Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of
the need for alternatives to allograft tissues. Within the last three decades, research efforts in …

Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review

A Fatimi, OV Okoro, D Podstawczyk, J Siminska-Stanny… - Gels, 2022 - mdpi.com
Three-dimensional (3D) printing is well acknowledged to constitute an important technology
in tissue engineering, largely due to the increasing global demand for organ replacement …

Crosslinking strategies for 3D bioprinting of polymeric hydrogels

A GhavamiNejad, N Ashammakhi, XY Wu… - Small, 2020 - Wiley Online Library
Abstract Three‐dimensional (3D) bioprinting has recently advanced as an important tool to
produce viable constructs that can be used for regenerative purposes or as tissue models …

Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques

M Askari, MA Naniz, M Kouhi, A Saberi… - Biomaterials …, 2021 - pubs.rsc.org
Over the last decade, 3D bioprinting has received immense attention from research
communities for developing functional tissues. Thanks to the complexity of tissues, various …

3D bioprinting of tissues and organs for regenerative medicine

S Vijayavenkataraman, WC Yan, WF Lu… - Advanced drug delivery …, 2018 - Elsevier
Abstract 3D bioprinting is a pioneering technology that enables fabrication of biomimetic,
multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate …

Fundamentals and applications of photo-cross-linking in bioprinting

KS Lim, JH Galarraga, X Cui, GCJ Lindberg… - Chemical …, 2020 - ACS Publications
This review provides a detailed overview of the rapidly advancing field of biofabrication,
particularly with regards to the use of photo-cross-linking (ie, light-based) techniques. The …

Chitosan-based inks for 3D printing and bioprinting

M Taghizadeh, A Taghizadeh, MK Yazdi, P Zarrintaj… - Green …, 2022 - pubs.rsc.org
The advent of 3D-printing/additive manufacturing in biomedical engineering field has
introduced great potential for the preparation of 3D structures that can mimic native tissues …

Biofabrication strategies for 3D in vitro models and regenerative medicine

L Moroni, JA Burdick, C Highley, SJ Lee… - Nature Reviews …, 2018 - nature.com
Organs are complex systems composed of different cells, proteins and signalling molecules
that are arranged in a highly ordered structure to orchestrate a myriad of functions in our …