Research review for broad learning system: Algorithms, theory, and applications

X Gong, T Zhang, CLP Chen… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
In recent years, the appearance of the broad learning system (BLS) is poised to
revolutionize conventional artificial intelligence methods. It represents a step toward building …

Machine learning paradigms for speech recognition: An overview

L Deng, X Li - IEEE Transactions on Audio, Speech, and …, 2013 - ieeexplore.ieee.org
Automatic Speech Recognition (ASR) has historically been a driving force behind many
machine learning (ML) techniques, including the ubiquitously used hidden Markov model …

Learning a unified classifier incrementally via rebalancing

S Hou, X Pan, CC Loy, Z Wang… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
Conventionally, deep neural networks are trained offline, relying on a large dataset
prepared in advance. This paradigm is often challenged in real-world applications, eg online …

End-to-end incremental learning

FM Castro, MJ Marín-Jiménez, N Guil… - Proceedings of the …, 2018 - openaccess.thecvf.com
Although deep learning approaches have stood out in recent years due to their state-of-the-
art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall …

An empirical investigation of the role of pre-training in lifelong learning

SV Mehta, D Patil, S Chandar, E Strubell - Journal of Machine Learning …, 2023 - jmlr.org
The lifelong learning paradigm in machine learning is an attractive alternative to the more
prominent isolated learning scheme not only due to its resemblance to biological learning …

Incremental learning algorithms and applications

A Gepperth, B Hammer - European symposium on artificial neural …, 2016 - hal.science
Incremental learning refers to learning from streaming data, which arrive over time, with
limited memory resources and, ideally, without sacrificing model accuracy. This setting fits …

Incremental learning in online scenario

J He, R Mao, Z Shao, F Zhu - Proceedings of the IEEE/CVF …, 2020 - openaccess.thecvf.com
Modern deep learning approaches have achieved great success in many vision applications
by training a model using all available task-specific data. However, there are two major …

Incremental learning using conditional adversarial networks

Y Xiang, Y Fu, P Ji, H Huang - Proceedings of the IEEE/CVF …, 2019 - openaccess.thecvf.com
Abstract Incremental learning using Deep Neural Networks (DNNs) suffers from catastrophic
forgetting. Existing methods mitigate it by either storing old image examples or only updating …

One-class support vector classifiers: A survey

S Alam, SK Sonbhadra, S Agarwal… - Knowledge-Based …, 2020 - Elsevier
Over the past two decades, one-class classification (OCC) becomes very popular due to its
diversified applicability in data mining and pattern recognition problems. Concerning to …

Learning drifting concepts: Example selection vs. example weighting

R Klinkenberg - Intelligent data analysis, 2004 - content.iospress.com
For many learning tasks where data is collected over an extended period of time, its
underlying distribution is likely to change. A typical example is information filtering, ie the …