Machine learning for electrocatalyst and photocatalyst design and discovery

H Mai, TC Le, D Chen, DA Winkler… - Chemical …, 2022 - ACS Publications
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …

Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …

Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …

Human-and machine-centred designs of molecules and materials for sustainability and decarbonization

J Peng, D Schwalbe-Koda, K Akkiraju, T Xie… - Nature Reviews …, 2022 - nature.com
Breakthroughs in molecular and materials discovery require meaningful outliers to be
identified in existing trends. As knowledge accumulates, the inherent bias of human intuition …

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Z Fan, Y Wang, P Ying, K Song, J Wang… - The Journal of …, 2022 - pubs.aip.org
We present our latest advancements of machine-learned potentials (MLPs) based on the
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

Roadmap on machine learning in electronic structure

HJ Kulik, T Hammerschmidt, J Schmidt, S Botti… - Electronic …, 2022 - iopscience.iop.org
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …

[HTML][HTML] Machine learning potentials for metal-organic frameworks using an incremental learning approach

S Vandenhaute, M Cools-Ceuppens… - npj Computational …, 2023 - nature.com
Computational modeling of physical processes in metal-organic frameworks (MOFs) is
highly challenging due to the presence of spatial heterogeneities and complex operating …

Ab initio quantum chemistry with neural-network wavefunctions

J Hermann, J Spencer, K Choo, A Mezzacapo… - Nature Reviews …, 2023 - nature.com
Deep learning methods outperform human capabilities in pattern recognition and data
processing problems and now have an increasingly important role in scientific discovery. A …