Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes

M El Machkouri, K Es-Sebaiy, Y Ouknine - Journal of the Korean Statistical …, 2016 - Elsevier
The statistical analysis for equations driven by fractional Gaussian process (fGp) is relatively
recent. The development of stochastic calculus with respect to the fGp allowed to study such …

[HTML][HTML] Optimal rates for parameter estimation of stationary Gaussian processes

K Es-Sebaiy, FG Viens - Stochastic Processes and their Applications, 2019 - Elsevier
We study rates of convergence in central limit theorems for partial sums of polynomial
functionals of general stationary and asymptotically stationary Gaussian sequences, using …

Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind

E Azmoodeh, L Viitasaari - Statistical Inference for Stochastic Processes, 2015 - Springer
Abstract Fractional Ornstein–Uhlenbeck process of the second kind (fOU _ 2)(fOU 2) is a
solution of the Langevin equation d X_t=-θ X_t\, d t+ d Y_t^(1),\theta> 0 d X t=-θ X tdt+ d Y t …

Parameter estimation for a partially observed Ornstein–Uhlenbeck process with long-memory noise

B El Onsy, K Es-Sebaiy, F G. Viens - Stochastics, 2017 - Taylor & Francis
We consider the parameter estimation problem for the Ornstein–Uhlenbeck process X driven
by a fractional Ornstein–Uhlenbeck process V, ie the pair of processes defined by the non …

Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean

S Bajja, K Es-Sebaiy, L Viitasaari - Journal of the Korean Statistical Society, 2017 - Elsevier
We first study the drift parameter estimation of the fractional Ornstein–Uhlenbeck process
(fOU) with periodic mean for every 1 2< H< 1. More precisely, we extend the consistency …

Parameter estimation for the Langevin equation with stationary-increment Gaussian noise

T Sottinen, L Viitasaari - Statistical Inference for Stochastic Processes, 2018 - Springer
We study the Langevin equation with stationary-increment Gaussian noise. We show the
strong consistency and the asymptotic normality with Berry–Esseen bound of the so-called …

Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model

K Es-Sebaiy, M Es. Sebaiy - Statistical Methods & Applications, 2021 - Springer
We study a problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model
defined as dX_t= θ (μ+ X_t) dt+ dG_t,\t ≥ 0 d X t= θ (μ+ X t) dt+ d G t, t≥ 0 with unknown …

Berry-Ess\'een bounds for parameter estimation of general Gaussian processes

S Douissi, K Es-Sebaiy, FG Viens - arXiv preprint arXiv:1706.02420, 2017 - arxiv.org
We study rates of convergence in central limit theorems for the partial sum of squares of
general Gaussian sequences, using tools from analysis on Wiener space. No assumption of …

Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation

M Dozzi, Y Kozachenko, Y Mishura… - Statistical inference for …, 2018 - Springer
We construct the least-square estimator for the unknown drift parameter in the multifractional
Ornstein–Uhlenbeck model and establish its strong consistency in the non-ergodic case …

Self-normalized asymptotic properties for the parameter estimation in fractional Ornstein–Uhlenbeck process

H Jiang, J Liu, S Wang - Stochastics and Dynamics, 2019 - World Scientific
In this paper, we consider the self-normalized asymptotic properties of the parameter
estimators in the fractional Ornstein–Uhlenbeck process. The deviation inequalities, Cramér …