Deep learning for air pollutant concentration prediction: A review

B Zhang, Y Rong, R Yong, D Qin, M Li, G Zou… - Atmospheric …, 2022 - Elsevier
Air pollution has become one of the critical environmental problem in the 21st century and
has attracted worldwide attentions. To mitigate it, many researchers have investigated the …

Analysis methods in neural language processing: A survey

Y Belinkov, J Glass - … of the Association for Computational Linguistics, 2019 - direct.mit.edu
The field of natural language processing has seen impressive progress in recent years, with
neural network models replacing many of the traditional systems. A plethora of new models …

Why does surprisal from larger transformer-based language models provide a poorer fit to human reading times?

BD Oh, W Schuler - Transactions of the Association for Computational …, 2023 - direct.mit.edu
This work presents a linguistic analysis into why larger Transformer-based pre-trained
language models with more parameters and lower perplexity nonetheless yield surprisal …

The neural architecture of language: Integrative modeling converges on predictive processing

M Schrimpf, IA Blank, G Tuckute… - Proceedings of the …, 2021 - National Acad Sciences
The neuroscience of perception has recently been revolutionized with an integrative
modeling approach in which computation, brain function, and behavior are linked across …

[PDF][PDF] Machine psychology: Investigating emergent capabilities and behavior in large language models using psychological methods

T Hagendorff - arXiv preprint arXiv:2303.13988, 2023 - cybershafarat.com
Large language models (LLMs) are currently at the forefront of intertwining AI systems with
human communication and everyday life. Due to rapid technological advances and their …

Deep learning for aspect-based sentiment analysis: a comparative review

HH Do, PWC Prasad, A Maag, A Alsadoon - Expert systems with …, 2019 - Elsevier
The increasing volume of user-generated content on the web has made sentiment analysis
an important tool for the extraction of information about the human emotional state. A current …

Embers of autoregression: Understanding large language models through the problem they are trained to solve

RT McCoy, S Yao, D Friedman, M Hardy… - arXiv preprint arXiv …, 2023 - arxiv.org
The widespread adoption of large language models (LLMs) makes it important to recognize
their strengths and limitations. We argue that in order to develop a holistic understanding of …

Recent trends in deep learning based natural language processing

T Young, D Hazarika, S Poria… - ieee Computational …, 2018 - ieeexplore.ieee.org
Deep learning methods employ multiple processing layers to learn hierarchical
representations of data, and have produced state-of-the-art results in many domains …

Semantic memory: A review of methods, models, and current challenges

AA Kumar - Psychonomic Bulletin & Review, 2021 - Springer
Adult semantic memory has been traditionally conceptualized as a relatively static memory
system that consists of knowledge about the world, concepts, and symbols. Considerable …

Embers of autoregression show how large language models are shaped by the problem they are trained to solve

RT McCoy, S Yao, D Friedman, MD Hardy… - Proceedings of the …, 2024 - pnas.org
The widespread adoption of large language models (LLMs) makes it important to recognize
their strengths and limitations. We argue that to develop a holistic understanding of these …