Assessing the potentials of multi-temporal sentinel-1 SAR data for paddy yield forecasting using artificial neural network

PK Sharma, P Kumar, HS Srivastava… - Journal of the Indian …, 2022 - Springer
Accurate yield estimation of paddy crop plays an important role in forecasting paddy
productivity for ensuring regional or national food security of the country. Although the crop …

SAR polarimetric analysis for major land covers including pre-monsoon crops

A Verma, D Haldar - Geocarto International, 2021 - Taylor & Francis
The potential of single date fully polarimetric SAR data was brought out in discriminating
different land covers at level 3 (LULC classification system NRSC) by deriving various …

Pearl millet crop biophysical parameter retrieval from space borne polarimetric SAR data using machine learning

D Thulasiraman, D Haldar, S Kumar… - Earth and Space …, 2024 - Wiley Online Library
The potential of single date fully Polarimetric RADARSAT‐2 data in retrieving crop
biophysical parameters using Machine Learning techniques was investigated. Various …

Crop height estimation using RISAT-1 hybrid-polarized synthetic aperture radar data

S Chauhan, HS Srivastava… - IEEE Journal of Selected …, 2019 - ieeexplore.ieee.org
The objective of this paper was to explore the potential of hybrid-polarized (RH and RV)
RISAT-1 SAR data to retrieve the height of wheat crop-an important winter crop in South …

Evaluation of multi-temporal Sentinel-1 dual polarization SAR data for crop type classification

T Sivasankar, PK Sharma, MNS Ramya… - … Information Science for …, 2020 - igi-global.com
India is one of the highly populated countries, and its economy mainly depends on
agriculture. The crop type classification is an essential requirement for ensuring food …

[PDF][PDF] A Comparative Study and Machine Learning Enabled Efficient Classification for Multispectral Data in Agriculture

P Gupta, S Kanga, VN Mishra, S Kumar… - Baghdad Science …, 2024 - iasj.net
Reliable and accurate crop maps are required for food security from regional to global scale.
The increased availability of satellite imagery leads to a “Big Data” problem while producing …

[PDF][PDF] 基于EnMAP 卫星和深度神经网络的LAI 遥感反演方法

李雪玲, 董莹莹, 朱溢佞, 黄文江 - 红外与毫米波学报, 2019 - researching.cn
区域叶面积指数(Leaf Area Index, LAI) 定量反演是开展大尺度农作物长势监测和产量估算的
重要基础. 针对当前区域LAI 遥感定量反演存在的反演精度不理想和模型稳定性弱等问题 …

Leaf area index estimation with EnMAP hyperspectral data based on deep neural network

李雪玲, 董莹莹, 朱溢佞, 黄文江 - Journal of Infrared and …, 2019 - journal.sitp.ac.cn
区域叶面积指数 (Leaf Area Index, LAI) 定量反演是开展大尺度农作物长势监测和产量估算的
重要基础. 针对当前区域 LAI 遥感定量反演存在的反演精度不理想和模型稳定性弱等问题 …