[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …

M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …

Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review

Z Yang, B Xu, W Luo, F Chen - Measurement, 2022 - Elsevier
With the increase of the scale and complexity of mechanical equipment, traditional intelligent
fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the …

Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects

A Angelopoulos, ET Michailidis, N Nomikos… - Sensors, 2019 - mdpi.com
The recent advancements in the fields of artificial intelligence (AI) and machine learning
(ML) have affected several research fields, leading to improvements that could not have …

Deep learning and its applications to machine health monitoring

R Zhao, R Yan, Z Chen, K Mao, P Wang… - Mechanical Systems and …, 2019 - Elsevier
Abstract Since 2006, deep learning (DL) has become a rapidly growing research direction,
redefining state-of-the-art performances in a wide range of areas such as object recognition …

[PDF][PDF] Anomaly Detection Using One-Class Neural Networks

R Chalapathy - arXiv preprint arXiv:1802.06360, 2018 - arxiv.org
We propose a one-class neural network (OC-NN) model to detect anomalies in complex
data sets. OC-NN combines the ability of deep networks to extract a progressively rich …

A review of artificial intelligence methods for condition monitoring and fault diagnosis of rolling element bearings for induction motor

O AlShorman, M Irfan, N Saad, D Zhen… - Shock and …, 2020 - Wiley Online Library
The fault detection and diagnosis (FDD) along with condition monitoring (CM) and of rotating
machinery (RM) have critical importance for early diagnosis to prevent severe damage of …

Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research

S Gawde, S Patil, S Kumar, P Kamat, K Kotecha… - … Applications of Artificial …, 2023 - Elsevier
Industry 4.0 is an era of smart manufacturing. Manufacturing is impossible without the use of
machinery. The majority of these machines comprise rotating components and are called …

Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers

RN Toma, AE Prosvirin, JM Kim - Sensors, 2020 - mdpi.com
Efficient fault diagnosis of electrical and mechanical anomalies in induction motors (IMs) is
challenging but necessary to ensure safety and economical operation in industries …

A review of machine learning methods applied to structural dynamics and vibroacoustic

BZ Cunha, C Droz, AM Zine, S Foulard… - Mechanical Systems and …, 2023 - Elsevier
Abstract The use of Machine Learning (ML) has rapidly spread across several fields of
applied sciences, having encountered many applications in Structural Dynamics and …

Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions

MJ Hasan, MMM Islam, JM Kim - Measurement, 2019 - Elsevier
Incipient fault diagnosis of a bearing requires robust feature representation for an accurate
condition-based monitoring system. Existing fault diagnosis schemes are mostly confined to …