[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …
M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …
Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review
Z Yang, B Xu, W Luo, F Chen - Measurement, 2022 - Elsevier
With the increase of the scale and complexity of mechanical equipment, traditional intelligent
fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the …
fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the …
Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects
The recent advancements in the fields of artificial intelligence (AI) and machine learning
(ML) have affected several research fields, leading to improvements that could not have …
(ML) have affected several research fields, leading to improvements that could not have …
Deep learning and its applications to machine health monitoring
Abstract Since 2006, deep learning (DL) has become a rapidly growing research direction,
redefining state-of-the-art performances in a wide range of areas such as object recognition …
redefining state-of-the-art performances in a wide range of areas such as object recognition …
[PDF][PDF] Anomaly Detection Using One-Class Neural Networks
R Chalapathy - arXiv preprint arXiv:1802.06360, 2018 - arxiv.org
We propose a one-class neural network (OC-NN) model to detect anomalies in complex
data sets. OC-NN combines the ability of deep networks to extract a progressively rich …
data sets. OC-NN combines the ability of deep networks to extract a progressively rich …
A review of artificial intelligence methods for condition monitoring and fault diagnosis of rolling element bearings for induction motor
The fault detection and diagnosis (FDD) along with condition monitoring (CM) and of rotating
machinery (RM) have critical importance for early diagnosis to prevent severe damage of …
machinery (RM) have critical importance for early diagnosis to prevent severe damage of …
Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research
Industry 4.0 is an era of smart manufacturing. Manufacturing is impossible without the use of
machinery. The majority of these machines comprise rotating components and are called …
machinery. The majority of these machines comprise rotating components and are called …
Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers
RN Toma, AE Prosvirin, JM Kim - Sensors, 2020 - mdpi.com
Efficient fault diagnosis of electrical and mechanical anomalies in induction motors (IMs) is
challenging but necessary to ensure safety and economical operation in industries …
challenging but necessary to ensure safety and economical operation in industries …
A review of machine learning methods applied to structural dynamics and vibroacoustic
Abstract The use of Machine Learning (ML) has rapidly spread across several fields of
applied sciences, having encountered many applications in Structural Dynamics and …
applied sciences, having encountered many applications in Structural Dynamics and …
Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions
Incipient fault diagnosis of a bearing requires robust feature representation for an accurate
condition-based monitoring system. Existing fault diagnosis schemes are mostly confined to …
condition-based monitoring system. Existing fault diagnosis schemes are mostly confined to …