[HTML][HTML] Topics on Fermi varieties of discrete periodic Schrödinger operators

W Liu - Journal of Mathematical Physics, 2022 - pubs.aip.org
The geometry of Fermi varieties plays critical roles in studying many topics of periodic
Schrödinger operators. In this article, we will first discuss the irreducibility of the Fermi variety …

Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators

W Liu, DC Ong - Journal d'Analyse Mathématique, 2020 - Springer
In this paper, we consider the Schrödinger equation, Hu=-u^"+\left (V\left (x\right)+ V_0\left
(x\right)\right) u= Eu, H u=− u ″+(V (x)+ V 0 (x)) u= E u, where V 0 (x) is 1-periodic and V (x) …

Spectral results for perturbed periodic Jacobi matrices using the discrete Levinson technique

E Judge, S Naboko, I Wood - arXiv preprint arXiv:1703.10223, 2017 - arxiv.org
For an arbitrary Hermitian period-$ T $ Jacobi operator, we assume a perturbation by a
Wigner-von Neumann type potential to devise subordinate solutions to the formal spectral …

One dimensional discrete Schrödinger operators with resonant embedded eigenvalues

W Liu, K Lyu - From Complex Analysis to Operator Theory: A …, 2023 - Springer
One Dimensional Discrete Schrödinger Operators with Resonant Embedded Eigenvalues |
SpringerLink Skip to main content Advertisement SpringerLink Account Menu Find a journal …

The asymptotical behaviour of embedded eigenvalues for perturbed periodic operators

W Liu - arXiv preprint arXiv:1809.04699, 2018 - arxiv.org
Let $ H_0 $ be a periodic operator on $\R^+ $(or periodic Jacobi operator on $\N $). It is
known that the absolutely continuous spectrum of $ H_0 $ is consisted of spectral bands …

On the perturbed periodic Schr\" odinger operators with separate resonant embedded eigenvalues

K Lyu, C Yang - arXiv preprint arXiv:2410.09509, 2024 - arxiv.org
In this paper, we consider Schr\" odinger operators on $ L^ 2 (0,\infty) $ given by\begin
{align} Hu=(H_0+ V) u=-u^{\prime\prime}+ V_0u+ Vu= Eu,\nonumber\end {align} where …

Sharp bounds for finitely many embedded eigenvalues of perturbed Stark type operators

W Liu - Mathematische Nachrichten, 2020 - Wiley Online Library
For perturbed Stark operators H u=− u′′− xu+ qu, the author has proved that lim sup x→∞
x 1 2| q (x)| must be larger than 1 2 N 1 2 in order to create N linearly independent …

Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach

E Judge, S Naboko, I Wood - Journal of Difference Equations and …, 2018 - Taylor & Francis
We consider the problem of embedding eigenvalues into the essential spectrum of periodic
Jacobi operators, using an oscillating, decreasing potential. To do this we employ a …

Sharp spectral transition for embedded eigenvalues of perturbed periodic Dirac operators

K Lyu, C Yang - arXiv preprint arXiv:2404.08218, 2024 - arxiv.org
We consider the Dirac equation on $ L^ 2 (\mathbb {R})\oplus L^ 2 (\mathbb {R}) $\begin
{align} Ly=\begin {pmatrix} 0&-1 1&0\end {pmatrix}\begin {pmatrix} y_1 y_2\end …

Sergey Naboko's Legacy on the Spectral Theory of Jacobi Operators

LO Silva, S Simonov - From Complex Analysis to Operator Theory: A …, 2023 - Springer
Sergey Naboko authored a large amount of papers on the spectral theory of Jacobi
operators. The main themes of his work are the existence of eigenvalues embedded into the …