Backdoor learning: A survey

Y Li, Y Jiang, Z Li, ST Xia - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so
that the attacked models perform well on benign samples, whereas their predictions will be …

Domain watermark: Effective and harmless dataset copyright protection is closed at hand

J Guo, Y Li, L Wang, ST Xia… - Advances in Neural …, 2024 - proceedings.neurips.cc
The prosperity of deep neural networks (DNNs) is largely benefited from open-source
datasets, based on which users can evaluate and improve their methods. In this paper, we …

Backdoor defense via decoupling the training process

K Huang, Y Li, B Wu, Z Qin, K Ren - arXiv preprint arXiv:2202.03423, 2022 - arxiv.org
Recent studies have revealed that deep neural networks (DNNs) are vulnerable to backdoor
attacks, where attackers embed hidden backdoors in the DNN model by poisoning a few …

Untargeted backdoor watermark: Towards harmless and stealthy dataset copyright protection

Y Li, Y Bai, Y Jiang, Y Yang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Deep neural networks (DNNs) have demonstrated their superiority in practice. Arguably, the
rapid development of DNNs is largely benefited from high-quality (open-sourced) datasets …

Mm-bd: Post-training detection of backdoor attacks with arbitrary backdoor pattern types using a maximum margin statistic

H Wang, Z Xiang, DJ Miller… - 2024 IEEE Symposium on …, 2024 - ieeexplore.ieee.org
Backdoor attacks are an important type of adversarial threat against deep neural network
classifiers, wherein test samples from one or more source classes will be (mis) classified to …

Not all samples are born equal: Towards effective clean-label backdoor attacks

Y Gao, Y Li, L Zhu, D Wu, Y Jiang, ST Xia - Pattern Recognition, 2023 - Elsevier
Recent studies demonstrated that deep neural networks (DNNs) are vulnerable to backdoor
attacks. The attacked model behaves normally on benign samples, while its predictions are …

Nearest is not dearest: Towards practical defense against quantization-conditioned backdoor attacks

B Li, Y Cai, H Li, F Xue, Z Li… - Proceedings of the IEEE …, 2024 - openaccess.thecvf.com
Abstract Model quantization is widely used to compress and accelerate deep neural
networks. However recent studies have revealed the feasibility of weaponizing model …

Scale-up: An efficient black-box input-level backdoor detection via analyzing scaled prediction consistency

J Guo, Y Li, X Chen, H Guo, L Sun, C Liu - arXiv preprint arXiv:2302.03251, 2023 - arxiv.org
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where adversaries
embed a hidden backdoor trigger during the training process for malicious prediction …

Policycleanse: Backdoor detection and mitigation for competitive reinforcement learning

J Guo, A Li, L Wang, C Liu - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
While real-world applications of reinforcement learning (RL) are becoming popular, the
security and robustness of RL systems are worthy of more attention and exploration. In …

Black-box dataset ownership verification via backdoor watermarking

Y Li, M Zhu, X Yang, Y Jiang, T Wei… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep learning, especially deep neural networks (DNNs), has been widely and successfully
adopted in many critical applications for its high effectiveness and efficiency. The rapid …