A survey on the densest subgraph problem and its variants

T Lanciano, A Miyauchi, A Fazzone, F Bonchi - ACM Computing Surveys, 2024 - dl.acm.org
The Densest Subgraph Problem requires us to find, in a given graph, a subset of vertices
whose induced subgraph maximizes a measure of density. The problem has received a …

Privacy preserving social network data publication

JH Abawajy, MIH Ninggal… - … communications surveys & …, 2016 - ieeexplore.ieee.org
The introduction of online social networks (OSN) has transformed the way people connect
and interact with each other as well as share information. OSN have led to a tremendous …

Towards practical differential privacy for SQL queries

N Johnson, JP Near, D Song - Proceedings of the VLDB Endowment, 2018 - dl.acm.org
Differential privacy promises to enable general data analytics while protecting individual
privacy, but existing differential privacy mechanisms do not support the wide variety of …

The complexity of differential privacy

S Vadhan - Tutorials on the Foundations of Cryptography …, 2017 - Springer
Differential privacy is a theoretical framework for ensuring the privacy of individual-level data
when performing statistical analysis of privacy-sensitive datasets. This tutorial provides an …

Differentially private data publishing and analysis: A survey

T Zhu, G Li, W Zhou, SY Philip - IEEE Transactions on …, 2017 - ieeexplore.ieee.org
Differential privacy is an essential and prevalent privacy model that has been widely
explored in recent decades. This survey provides a comprehensive and structured overview …

Linkteller: Recovering private edges from graph neural networks via influence analysis

F Wu, Y Long, C Zhang, B Li - 2022 ieee symposium on …, 2022 - ieeexplore.ieee.org
Graph structured data have enabled several successful applications such as
recommendation systems and traffic prediction, given the rich node features and edges …

Analyzing graphs with node differential privacy

SP Kasiviswanathan, K Nissim… - Theory of Cryptography …, 2013 - Springer
We develop algorithms for the private analysis of network data that provide accurate
analysis of realistic networks while satisfying stronger privacy guarantees than those of …

Applications of differential privacy in social network analysis: A survey

H Jiang, J Pei, D Yu, J Yu, B Gong… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Differential privacy provides strong privacy preservation guarantee in information sharing.
As social network analysis has been enjoying many applications, it opens a new arena for …

Sok: differential privacies

D Desfontaines, B Pejó - arXiv preprint arXiv:1906.01337, 2019 - arxiv.org
Shortly after it was first introduced in 2006, differential privacy became the flagship data
privacy definition. Since then, numerous variants and extensions were proposed to adapt it …

Publishing graph degree distribution with node differential privacy

WY Day, N Li, M Lyu - Proceedings of the 2016 International Conference …, 2016 - dl.acm.org
Graph data publishing under node-differential privacy (node-DP) is challenging due to the
huge sensitivity of queries. However, since a node in graph data oftentimes represents a …