[HTML][HTML] Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review
The recent advancements made in the realms of Artificial Intelligence (AI) and Artificial
Intelligence of Things (AIoT) have unveiled transformative prospects and opportunities to …
Intelligence of Things (AIoT) have unveiled transformative prospects and opportunities to …
Scientific machine learning through physics–informed neural networks: Where we are and what's next
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …
model equations, like Partial Differential Equations (PDE), as a component of the neural …
Reproducible scaling laws for contrastive language-image learning
M Cherti, R Beaumont, R Wightman… - Proceedings of the …, 2023 - openaccess.thecvf.com
Scaling up neural networks has led to remarkable performance across a wide range of
tasks. Moreover, performance often follows reliable scaling laws as a function of training set …
tasks. Moreover, performance often follows reliable scaling laws as a function of training set …
What can transformers learn in-context? a case study of simple function classes
In-context learning is the ability of a model to condition on a prompt sequence consisting of
in-context examples (input-output pairs corresponding to some task) along with a new query …
in-context examples (input-output pairs corresponding to some task) along with a new query …
Better diffusion models further improve adversarial training
It has been recognized that the data generated by the denoising diffusion probabilistic
model (DDPM) improves adversarial training. After two years of rapid development in …
model (DDPM) improves adversarial training. After two years of rapid development in …
A review on fairness in machine learning
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
In-context learning and induction heads
" Induction heads" are attention heads that implement a simple algorithm to complete token
sequences like [A][B]...[A]->[B]. In this work, we present preliminary and indirect evidence for …
sequences like [A][B]...[A]->[B]. In this work, we present preliminary and indirect evidence for …
Physics-informed machine learning
Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate …
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate …
[HTML][HTML] Pre-trained models: Past, present and future
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved
great success and become a milestone in the field of artificial intelligence (AI). Owing to …
great success and become a milestone in the field of artificial intelligence (AI). Owing to …
Underspecification presents challenges for credibility in modern machine learning
Machine learning (ML) systems often exhibit unexpectedly poor behavior when they are
deployed in real-world domains. We identify underspecification in ML pipelines as a key …
deployed in real-world domains. We identify underspecification in ML pipelines as a key …