Distributionally robust linear quadratic control
Abstract Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is
studied in various fields such as engineering, computer science, economics, and …
studied in various fields such as engineering, computer science, economics, and …
Regret-optimal Cross-layer Co-design in Networked Control Systems–Part I: General Case
Performance of control systems interacting over a shared communication network is tightly
coupled with how the network provides services and distributes resources. Novel networking …
coupled with how the network provides services and distributes resources. Novel networking …
Robust regret optimal control
This paper presents a synthesis method for robust, regret optimal control. The plant is
modeled in discrete‐time by an uncertain linear time‐invariant (LTI) system. An optimal non …
modeled in discrete‐time by an uncertain linear time‐invariant (LTI) system. An optimal non …
Implications of regret on stability of linear dynamical systems
The setting of an agent making decisions under uncertainty and under dynamic constraints
is common for the fields of optimal control, reinforcement learning, and recently also for …
is common for the fields of optimal control, reinforcement learning, and recently also for …
On the guarantees of minimizing regret in receding horizon
Towards bridging classical optimal control and online learning, regret minimization has
recently been proposed as a control design criterion. This competitive paradigm penalizes …
recently been proposed as a control design criterion. This competitive paradigm penalizes …
Regret-optimal control under partial observability
This paper studies online solutions for regretoptimal control in partially observable systems
over an infinitehorizon. Regret-optimal control aims to minimize the difference in LQR cost …
over an infinitehorizon. Regret-optimal control aims to minimize the difference in LQR cost …
An online learning analysis of minimax adaptive control
V Renganathan, A Iannelli… - 2023 62nd IEEE …, 2023 - ieeexplore.ieee.org
We present an online learning analysis of minimax adaptive control for the case where the
uncertainty includes a finite set of linear dynamical systems. Precisely, for each system …
uncertainty includes a finite set of linear dynamical systems. Precisely, for each system …
Online linear quadratic tracking with regret guarantees
A Karapetyan, D Bolliger, A Tsiamis… - IEEE Control …, 2023 - ieeexplore.ieee.org
Online learning algorithms for dynamical systems provide finite time guarantees for control
in the presence of sequentially revealed cost functions. We pose the classical linear …
in the presence of sequentially revealed cost functions. We pose the classical linear …
Optimistic Online Non-stochastic Control via FTRL
N Mhaisen, G Iosifidis - arXiv preprint arXiv:2404.03309, 2024 - arxiv.org
This paper brings the concept of" optimism" to the new and promising framework of online
Non-stochastic Control (NSC). Namely, we study how can NSC benefit from a prediction …
Non-stochastic Control (NSC). Namely, we study how can NSC benefit from a prediction …