Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries
J Wu, T Ye, Y Wang, P Yang, Q Wang, W Kuang… - ACS …, 2022 - ACS Publications
Because of their high energy density, low cost, and environmental friendliness, lithium–
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …
energy storage systems due to their high energy density and cost‐effectiveness. However …
Boosting Bi‐Directional Redox of Sulfur with Dual Metal Single Atom Pairs in Carbon Spheres Toward High‐Rate and Long‐Cycling Lithium–Sulfur Battery
C Dong, C Zhou, M Wu, Y Yu, K Yu… - Advanced Energy …, 2023 - Wiley Online Library
The severe shuttle effect of polysulfides and sluggish redox kinetics are the main problems
that hinder the practical applications of lithium–sulfur (Li–S) batteries. In this study, dual …
that hinder the practical applications of lithium–sulfur (Li–S) batteries. In this study, dual …
High-entropy ceramics: Review of principles, production and applications
High-entropy ceramics with five or more cations have recently attracted significant attention
due to their superior properties for various structural and functional applications. Although …
due to their superior properties for various structural and functional applications. Although …
A review on theoretical models for lithium–sulfur battery cathodes
Abstract Lithium–sulfur (Li–S) batteries have been considered as promising battery systems
due to their huge advantages on theoretical energy density and rich resources. However …
due to their huge advantages on theoretical energy density and rich resources. However …
Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis
W Hua, T Shang, H Li, Y Sun, Y Guo, J Xia, C Geng… - Nature Catalysis, 2023 - nature.com
Understanding sulfur conversion chemistry is key to the development of sulfur-based high-
energy-density batteries. However, unclear relationships between the electronic structure of …
energy-density batteries. However, unclear relationships between the electronic structure of …
Advances in lithium–sulfur batteries: from academic research to commercial viability
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …
Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries
Defective materials have been demonstrated to possess adsorptive and catalytic properties
in lithium–sulfur (Li–S) batteries, which can effectively solve the problems of lithium …
in lithium–sulfur (Li–S) batteries, which can effectively solve the problems of lithium …
Emerging catalysts to promote kinetics of lithium–sulfur batteries
P Wang, B Xi, M Huang, W Chen… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with a high theoretical capacity of 1675 mAh g− 1 hold
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …
Strategy of enhancing the volumetric energy density for lithium–sulfur batteries
Abstract Lithium–sulfur (Li–S) batteries hold the promise of the next generation energy
storage system beyond state‐of‐the‐art lithium‐ion batteries. Despite the attractive …
storage system beyond state‐of‐the‐art lithium‐ion batteries. Despite the attractive …