Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries

J Wu, T Ye, Y Wang, P Yang, Q Wang, W Kuang… - ACS …, 2022 - ACS Publications
Because of their high energy density, low cost, and environmental friendliness, lithium–
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …

Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries

Y Huang, L Lin, C Zhang, L Liu, Y Li, Z Qiao… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …

Boosting Bi‐Directional Redox of Sulfur with Dual Metal Single Atom Pairs in Carbon Spheres Toward High‐Rate and Long‐Cycling Lithium–Sulfur Battery

C Dong, C Zhou, M Wu, Y Yu, K Yu… - Advanced Energy …, 2023 - Wiley Online Library
The severe shuttle effect of polysulfides and sluggish redox kinetics are the main problems
that hinder the practical applications of lithium–sulfur (Li–S) batteries. In this study, dual …

High-entropy ceramics: Review of principles, production and applications

S Akrami, P Edalati, M Fuji, K Edalati - Materials Science and Engineering …, 2021 - Elsevier
High-entropy ceramics with five or more cations have recently attracted significant attention
due to their superior properties for various structural and functional applications. Although …

A review on theoretical models for lithium–sulfur battery cathodes

S Feng, ZH Fu, X Chen, Q Zhang - InfoMat, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have been considered as promising battery systems
due to their huge advantages on theoretical energy density and rich resources. However …

Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis

W Hua, T Shang, H Li, Y Sun, Y Guo, J Xia, C Geng… - Nature Catalysis, 2023 - nature.com
Understanding sulfur conversion chemistry is key to the development of sulfur-based high-
energy-density batteries. However, unclear relationships between the electronic structure of …

Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries

W Hou, P Feng, X Guo, Z Wang, Z Bai, Y Bai… - Advanced …, 2022 - Wiley Online Library
Defective materials have been demonstrated to possess adsorptive and catalytic properties
in lithium–sulfur (Li–S) batteries, which can effectively solve the problems of lithium …

Emerging catalysts to promote kinetics of lithium–sulfur batteries

P Wang, B Xi, M Huang, W Chen… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with a high theoretical capacity of 1675 mAh g− 1 hold
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …

Strategy of enhancing the volumetric energy density for lithium–sulfur batteries

YT Liu, S Liu, GR Li, XP Gao - Advanced Materials, 2021 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries hold the promise of the next generation energy
storage system beyond state‐of‐the‐art lithium‐ion batteries. Despite the attractive …