Reinforcement learning based recommender systems: A survey

MM Afsar, T Crump, B Far - ACM Computing Surveys, 2022 - dl.acm.org
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …

[HTML][HTML] Advances and challenges in conversational recommender systems: A survey

C Gao, W Lei, X He, M de Rijke, TS Chua - AI open, 2021 - Elsevier
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …

[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives

X Chen, L Yao, J McAuley, G Zhou, X Wang - Knowledge-Based Systems, 2023 - Elsevier
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …

A survey on conversational recommender systems

D Jannach, A Manzoor, W Cai, L Chen - ACM Computing Surveys …, 2021 - dl.acm.org
Recommender systems are software applications that help users to find items of interest in
situations of information overload. Current research often assumes a one-shot interaction …

Interactive path reasoning on graph for conversational recommendation

W Lei, G Zhang, X He, Y Miao, X Wang… - Proceedings of the 26th …, 2020 - dl.acm.org
Traditional recommendation systems estimate user preference on items from past interaction
history, thus suffering from the limitations of obtaining fine-grained and dynamic user …

Challenges of real-world reinforcement learning: definitions, benchmarks and analysis

G Dulac-Arnold, N Levine, DJ Mankowitz, J Li… - Machine Learning, 2021 - Springer
Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is
beginning to show some successes in real-world scenarios. However, much of the research …

KuaiRec: A fully-observed dataset and insights for evaluating recommender systems

C Gao, S Li, W Lei, J Chen, B Li, P Jiang, X He… - Proceedings of the 31st …, 2022 - dl.acm.org
The progress of recommender systems is hampered mainly by evaluation as it requires real-
time interactions between humans and systems, which is too laborious and expensive. This …

Hierarchical reinforcement learning: A survey and open research challenges

M Hutsebaut-Buysse, K Mets, S Latré - Machine Learning and Knowledge …, 2022 - mdpi.com
Reinforcement learning (RL) allows an agent to solve sequential decision-making problems
by interacting with an environment in a trial-and-error fashion. When these environments are …

Unified conversational recommendation policy learning via graph-based reinforcement learning

Y Deng, Y Li, F Sun, B Ding, W Lam - Proceedings of the 44th …, 2021 - dl.acm.org
Conversational recommender systems (CRS) enable the traditional recommender systems
to explicitly acquire user preferences towards items and attributes through interactive …

CIRS: Bursting filter bubbles by counterfactual interactive recommender system

C Gao, S Wang, S Li, J Chen, X He, W Lei, B Li… - ACM Transactions on …, 2023 - dl.acm.org
While personalization increases the utility of recommender systems, it also brings the issue
of filter bubbles. eg, if the system keeps exposing and recommending the items that the user …