A novel multi-segment feature fusion based fault classification approach for rotating machinery

J Liang, Y Zhang, JH Zhong, H Yang - Mechanical Systems and Signal …, 2019 - Elsevier
Accurate and efficient rotating machinery fault diagnosis is crucial for industries to guarantee
the productivity and reduce the maintenance cost. This paper systematically proposes a new …

A review and empirical analysis of neural networks based exchange rate prediction

TN Pandey, AK Jagadev, S Dehuri… - Intelligent Decision …, 2018 - content.iospress.com
Financial time series data is very chaotic, noisy, fluctuating and nonlinear as different events
have occurred in various time periods. Therefore, it is very challenging for researchers to …

Alternating direction method of multipliers for sparse convolutional neural networks

F Kiaee, C Gagné, M Abbasi - arXiv preprint arXiv:1611.01590, 2016 - arxiv.org
The storage and computation requirements of Convolutional Neural Networks (CNNs) can
be prohibitive for exploiting these models over low-power or embedded devices. This paper …

Incremental relevance sample-feature machine: A fast marginal likelihood maximization approach for joint feature selection and classification

Y Mohsenzadeh, H Sheikhzadeh, S Nazari - Pattern Recognition, 2016 - Elsevier
Abstract The recently proposed Relevance Sample-Feature Machine (RSFM) performs joint
feature selection and classification with state-of-the-art performance in terms of accuracy …

A fast and efficient conformal regressor with regularized extreme learning machine

D Wang, P Wang, J Shi - Neurocomputing, 2018 - Elsevier
A conformal regressor combines conformal prediction and a traditional regressor for point
predictions. It produces a valid prediction interval for a new testing input such that the …

[PDF][PDF] Colour difference classification for dyed fabrics based on differential evolution with dynamic parameter selection to optimise the output regularisation extreme …

Z Zhou, D Liu, J Zhang, Z Zhu, D Yang… - Fibres & Textiles in …, 2021 - bibliotekanauki.pl
A novel optimisation technique based on the differential evolution (DE) algorithm with
dynamic parameter selection (DPS-DE) is proposed to develop a colour difference …

Fault diagnosis of self-aligning troughing rollers in a belt conveyor system using an artificial neural network and naive bayes algorithm

S Ravikumar, S Kanagasabapathy… - Emerging Trends in …, 2018 - taylorfrancis.com
The self-aligning troughing roller (SATR) is an essential element of the belt conveyor
system. It may fail due to multidimensional forces, derisory lubrication, culpable sealing …

A double-layer ELM with added feature selection ability using a sparse Bayesian approach

F Kiaee, C Gagné, H Sheikhzadeh - Neurocomputing, 2016 - Elsevier
Abstract The Sparse Bayesian Extreme Learning Machine (SBELM) has been recently
proposed to reduce the number of units activated on the hidden layer. To deal with high …

Wybór parametrów w celu optymalizacji regularyzacji wyjściowej maszyny uczącej się

Z Zhiyu, L Dexin, Z Jianxin, Z Zefei… - FIBRES & TEXTILES in …, 2021 - fibtex.lodz.pl
Wybór parametrów w celu optymalizacji regularyzacji wyjściowej maszyny uczącej się —
Fibres & Textiles in Eastern Europe Strona główna O nas Rozwój czasopisma Redakcja …

[PDF][PDF] A FAST LEARNING NETWORK WITH IMPROVED PARTICLE SWARM OPTIMIZATION FOR INTRUSION DETECTION SYSTEM

MH ALI - 2019 - core.ac.uk
In current days the intrusion detection systems (IDS) have several shortcomings such as
high rates of false positive alerts, low detection rates of rare but dangerous attacks, and the …