Preparing medical imaging data for machine learning

MJ Willemink, WA Koszek, C Hardell, J Wu… - Radiology, 2020 - pubs.rsna.org
Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The
potential applications are vast and include the entirety of the medical imaging life cycle from …

Federated learning in a medical context: a systematic literature review

B Pfitzner, N Steckhan, B Arnrich - ACM Transactions on Internet …, 2021 - dl.acm.org
Data privacy is a very important issue. Especially in fields like medicine, it is paramount to
abide by the existing privacy regulations to preserve patients' anonymity. However, data is …

[HTML][HTML] Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization

P Papadimitroulas, L Brocki, NC Chung, W Marchadour… - Physica Medica, 2021 - Elsevier
Over the last decade there has been an extensive evolution in the Artificial Intelligence (AI)
field. Modern radiation oncology is based on the exploitation of advanced computational …

[HTML][HTML] Global healthcare fairness: We should be sharing more, not less, data

KP Seastedt, P Schwab, Z O'Brien, E Wakida… - PLOS Digital …, 2022 - journals.plos.org
The availability of large, deidentified health datasets has enabled significant innovation in
using machine learning (ML) to better understand patients and their diseases. However …

Deep learning workflow in radiology: a primer

E Montagnon, M Cerny, A Cadrin-Chênevert… - Insights into …, 2020 - Springer
Interest for deep learning in radiology has increased tremendously in the past decade due to
the high achievable performance for various computer vision tasks such as detection …

[HTML][HTML] Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools

O Diaz, K Kushibar, R Osuala, A Linardos, L Garrucho… - Physica medica, 2021 - Elsevier
The vast amount of data produced by today's medical imaging systems has led medical
professionals to turn to novel technologies in order to efficiently handle their data and exploit …

AAPM task group report 273: recommendations on best practices for AI and machine learning for computer‐aided diagnosis in medical imaging

L Hadjiiski, K Cha, HP Chan, K Drukker… - Medical …, 2023 - Wiley Online Library
Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep
learning (DL) techniques, have enabled broad application of these methods in health care …

[HTML][HTML] Federated learning in medical imaging: part II: methods, challenges, and considerations

E Darzidehkalani, M Ghasemi-Rad… - Journal of the American …, 2022 - Elsevier
Federated learning is a machine learning method that allows decentralized training of deep
neural networks among multiple clients while preserving the privacy of each client's data …

Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges

MRS Sunoqrot, A Saha, M Hosseinzadeh… - European radiology …, 2022 - Springer
Artificial intelligence (AI) for prostate magnetic resonance imaging (MRI) is starting to play a
clinical role for prostate cancer (PCa) patients. AI-assisted reading is feasible, allowing …

A comprehensive dataset of annotated brain metastasis MR images with clinical and radiomic data

B Ocaña-Tienda, J Pérez-Beteta, JD Villanueva-García… - Scientific data, 2023 - nature.com
Brain metastasis (BM) is one of the main complications of many cancers, and the most
frequent malignancy of the central nervous system. Imaging studies of BMs are routinely …