Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

Review of tool condition monitoring in machining and opportunities for deep learning

G Serin, B Sener, AM Ozbayoglu, HO Unver - The International Journal of …, 2020 - Springer
Tool condition monitoring and machine tool diagnostics are performed using advanced
sensors and computational intelligence to predict and avoid adverse conditions for cutting …

Highly accurate machine fault diagnosis using deep transfer learning

S Shao, S McAleer, R Yan… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
We develop a novel deep learning framework to achieve highly accurate machine fault
diagnosis using transfer learning to enable and accelerate the training of deep neural …

Deep learning and its applications to machine health monitoring

R Zhao, R Yan, Z Chen, K Mao, P Wang… - Mechanical Systems and …, 2019 - Elsevier
Abstract Since 2006, deep learning (DL) has become a rapidly growing research direction,
redefining state-of-the-art performances in a wide range of areas such as object recognition …

A review of artificial intelligence methods for condition monitoring and fault diagnosis of rolling element bearings for induction motor

O AlShorman, M Irfan, N Saad, D Zhen… - Shock and …, 2020 - Wiley Online Library
The fault detection and diagnosis (FDD) along with condition monitoring (CM) and of rotating
machinery (RM) have critical importance for early diagnosis to prevent severe damage of …

DCNN-based multi-signal induction motor fault diagnosis

S Shao, R Yan, Y Lu, P Wang… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Deep learning (DL) architecture, which exploits multiple hidden layers to learn hierarchical
representations automatically from massive input data, presents a promising tool for …

[HTML][HTML] Deep learning for manufacturing sustainability: Models, applications in Industry 4.0 and implications

A Jamwal, R Agrawal, M Sharma - International Journal of Information …, 2022 - Elsevier
Recent advancements and developments in artificial intelligence (AI) based approaches
have shifted the manufacturing practices towards the fourth industrial revolution, considered …

Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects

O Serradilla, E Zugasti, J Rodriguez, U Zurutuza - Applied Intelligence, 2022 - Springer
Given the growing amount of industrial data in the 4th industrial revolution, deep learning
solutions have become popular for predictive maintenance (PdM) tasks, which involve …

Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research

S Gawde, S Patil, S Kumar, P Kamat, K Kotecha… - … Applications of Artificial …, 2023 - Elsevier
Industry 4.0 is an era of smart manufacturing. Manufacturing is impossible without the use of
machinery. The majority of these machines comprise rotating components and are called …

Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review

SR Saufi, ZAB Ahmad, MS Leong, MH Lim - Ieee Access, 2019 - ieeexplore.ieee.org
In the age of industry 4.0, deep learning has attracted increasing interest for various
research applications. In recent years, deep learning models have been extensively …