Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

[HTML][HTML] Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results

X Li, Y Gu, N Dvornek, LH Staib, P Ventola… - Medical image …, 2020 - Elsevier
Deep learning models have shown their advantage in many different tasks, including
neuroimage analysis. However, to effectively train a high-quality deep learning model, the …

CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation

AE Kavur, NS Gezer, M Barış, S Aslan, PH Conze… - Medical Image …, 2021 - Elsevier
Segmentation of abdominal organs has been a comprehensive, yet unresolved, research
field for many years. In the last decade, intensive developments in deep learning (DL) …

Pseudo-label guided contrastive learning for semi-supervised medical image segmentation

H Basak, Z Yin - Proceedings of the IEEE/CVF conference …, 2023 - openaccess.thecvf.com
Although recent works in semi-supervised learning (SemiSL) have accomplished significant
success in natural image segmentation, the task of learning discriminative representations …

[HTML][HTML] Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization

F Hu, AA Chen, H Horng, V Bashyam, C Davatzikos… - NeuroImage, 2023 - Elsevier
Magnetic resonance imaging and computed tomography from multiple batches (eg sites,
scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to …

A survey on incorporating domain knowledge into deep learning for medical image analysis

X Xie, J Niu, X Liu, Z Chen, S Tang, S Yu - Medical Image Analysis, 2021 - Elsevier
Although deep learning models like CNNs have achieved great success in medical image
analysis, the small size of medical datasets remains a major bottleneck in this area. To …

[HTML][HTML] Learning disentangled representations in the imaging domain

X Liu, P Sanchez, S Thermos, AQ O'Neil… - Medical Image …, 2022 - Elsevier
Disentangled representation learning has been proposed as an approach to learning
general representations even in the absence of, or with limited, supervision. A good general …

CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation

R Dorent, A Kujawa, M Ivory, S Bakas, N Rieke… - Medical Image …, 2023 - Elsevier
Abstract Domain Adaptation (DA) has recently been of strong interest in the medical imaging
community. While a large variety of DA techniques have been proposed for image …

Unsupervised domain adaptation for medical image segmentation by disentanglement learning and self-training

Q Xie, Y Li, N He, M Ning, K Ma, G Wang… - … on Medical Imaging, 2022 - ieeexplore.ieee.org
Unsupervised domain adaption (UDA), which aims to enhance the segmentation
performance of deep models on unlabeled data, has recently drawn much attention. In this …