Review and perspectives on driver digital twin and its enabling technologies for intelligent vehicles

Z Hu, S Lou, Y Xing, X Wang, D Cao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Digital Twin (DT) is an emerging technology and has been introduced into intelligent driving
and transportation systems to digitize and synergize connected automated vehicles …

Deep learning technology for construction machinery and robotics

K You, C Zhou, L Ding - Automation in construction, 2023 - Elsevier
Construction machinery and robots are essential equipment for major infrastructure. The
application of deep learning technology can improve the construction quality and alleviate …

Uncertainty-aware model-based reinforcement learning: Methodology and application in autonomous driving

J Wu, Z Huang, C Lv - IEEE Transactions on Intelligent Vehicles, 2022 - ieeexplore.ieee.org
To further improve learning efficiency and performance of reinforcement learning (RL), a
novel uncertainty-aware model-based RL method is proposed and validated in autonomous …

Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm

C Jia, K Li, H He, J Zhou, J Li, Z Wei - Energy, 2023 - Elsevier
The air-conditioning system (ACS), as a high-power component on the fuel cell hybrid
electric bus (FCHEB), has a significant impact on the whole vehicle economy while …

Efficient deep reinforcement learning with imitative expert priors for autonomous driving

Z Huang, J Wu, C Lv - IEEE Transactions on Neural Networks …, 2022 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) is a promising way to achieve human-like autonomous
driving. However, the low sample efficiency and difficulty of designing reward functions for …

Driver anomaly quantification for intelligent vehicles: A contrastive learning approach with representation clustering

Z Hu, Y Xing, W Gu, D Cao, C Lv - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Driver anomaly quantification is a fundamental capability to support human-centric driving
systems of intelligent vehicles. Existing studies usually treat it as a classification task and …

Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving

Z Huang, H Liu, J Wu, C Lv - IEEE Transactions on Intelligent …, 2023 - ieeexplore.ieee.org
Making safe and human-like decisions is an essential capability of autonomous driving
systems, and learning-based behavior planning presents a promising pathway toward …

[HTML][HTML] Continual driver behaviour learning for connected vehicles and intelligent transportation systems: Framework, survey and challenges

Z Li, C Gong, Y Lin, G Li, X Wang, C Lu, M Wang… - Green Energy and …, 2023 - Elsevier
Modelling, predicting and analysing driver behaviours are essential to advanced driver
assistance systems (ADAS) and the comprehensive understanding of complex driving …

Human-guided reinforcement learning with sim-to-real transfer for autonomous navigation

J Wu, Y Zhou, H Yang, Z Huang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Reinforcement learning (RL) is a promising approach in unmanned ground vehicles (UGVs)
applications, but limited computing resource makes it challenging to deploy a well-behaved …

[HTML][HTML] Toward trustworthy decision-making for autonomous vehicles: A robust reinforcement learning approach with safety guarantees

X He, W Huang, C Lv - Engineering, 2024 - Elsevier
While autonomous vehicles are vital components of intelligent transportation systems,
ensuring the trustworthiness of decision-making remains a substantial challenge in realizing …