Explainable artificial intelligence: a comprehensive review
Thanks to the exponential growth in computing power and vast amounts of data, artificial
intelligence (AI) has witnessed remarkable developments in recent years, enabling it to be …
intelligence (AI) has witnessed remarkable developments in recent years, enabling it to be …
[HTML][HTML] Notions of explainability and evaluation approaches for explainable artificial intelligence
Abstract Explainable Artificial Intelligence (XAI) has experienced a significant growth over
the last few years. This is due to the widespread application of machine learning, particularly …
the last few years. This is due to the widespread application of machine learning, particularly …
[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …
applications, but the outcomes of many AI models are challenging to comprehend and trust …
Explainability for large language models: A survey
Large language models (LLMs) have demonstrated impressive capabilities in natural
language processing. However, their internal mechanisms are still unclear and this lack of …
language processing. However, their internal mechanisms are still unclear and this lack of …
Representation engineering: A top-down approach to ai transparency
In this paper, we identify and characterize the emerging area of representation engineering
(RepE), an approach to enhancing the transparency of AI systems that draws on insights …
(RepE), an approach to enhancing the transparency of AI systems that draws on insights …
A survey on neural network interpretability
Along with the great success of deep neural networks, there is also growing concern about
their black-box nature. The interpretability issue affects people's trust on deep learning …
their black-box nature. The interpretability issue affects people's trust on deep learning …
Post-hoc interpretability for neural nlp: A survey
Neural networks for NLP are becoming increasingly complex and widespread, and there is a
growing concern if these models are responsible to use. Explaining models helps to address …
growing concern if these models are responsible to use. Explaining models helps to address …
Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond
The evaluation of explanation methods is a research topic that has not yet been explored
deeply, however, since explainability is supposed to strengthen trust in artificial intelligence …
deeply, however, since explainability is supposed to strengthen trust in artificial intelligence …
Opportunities and challenges in explainable artificial intelligence (xai): A survey
Nowadays, deep neural networks are widely used in mission critical systems such as
healthcare, self-driving vehicles, and military which have direct impact on human lives …
healthcare, self-driving vehicles, and military which have direct impact on human lives …
Explainable machine learning in materials science
Abstract Machine learning models are increasingly used in materials studies because of
their exceptional accuracy. However, the most accurate machine learning models are …
their exceptional accuracy. However, the most accurate machine learning models are …